
Phoenix: Automated Data-Driven Synthesis of Repairs for Static
Analysis Violations

Rohan Bavishi∗
University of California Berkeley

Berkeley, California, USA
rbavishi@cs.berkeley.edu

Hiroaki Yoshida
Fujitsu Laboratories of America, Inc.

Sunnyvale, California, USA
hyoshida@us.fujitsu.com

Mukul R. Prasad
Fujitsu Laboratories of America, Inc.

Sunnyvale, California, USA
mukul@us.fujitsu.com

ABSTRACT

Traditional automatic program repair (APR) tools rely on a test-
suite as a repair specification. But test suites even when available
are not of specification quality, limiting the performance and hence
viability of test-suite based repair. On the other hand, static analysis-
based bug finding tools are seeing increasing adoption in industry
but still face challenges since the reported violations are viewed
as not easily actionable. We propose a novel solution that solves
both these challenges through a technique for automatically gener-
ating high-quality patches for static analysis violations by learning
from examples. Our approach uses the static analyzer as an ora-
cle and does not require a test suite. We realize our solution in a
system, Phoenix, that implements a fully-automated pipeline that
mines and cleans patches for static analysis violations from the
wild, learns generalized executable repair strategies as programs in
a novel Domain Specific Language (DSL), and then instantiates con-
crete repairs from them on new unseen violations. Using Phoenix
we mine a corpus of 5,389 unique violations and patches from 517
Github projects. In a cross-validation study on this corpus Phoenix
successfully produced 4,596 bug-fixes, with a recall of 85% and a
precision of 54%. When applied to the latest revisions of a further
5 Github projects, Phoenix produced 94 correct patches to previ-
ously unknown bugs, 19 of which have already been accepted and
merged by the development teams. To the best of our knowledge
this constitutes, by far the largest application of any automatic
patch generation technology to large-scale real-world systems.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis;
Domain specific languages; Programming by example; Soft-
ware testing and debugging.

KEYWORDS

program synthesis, program repair, static analysis, programming-
by-example

∗This work was done when the author was an intern at Fujitsu Labs. of America.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338952

ACM Reference Format:

Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. 2019. Phoenix: Au-
tomated Data-Driven Synthesis of Repairs for Static Analysis Violations. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338952

1 INTRODUCTION

Software debugging and patching is a time-consuming and labor-
intensive aspect of the software development process, for which an
automated solution is highly desirable. This has motivated a signif-
icant body of research on automatic program repair (APR) [12, 36].
Typical APR techniques use a test suite as a repair specification, i.e.,
an oracle, that fails on the buggy program, and which the correct
patch (for the bug) should satisfy. However, such specification-
quality test suites may be hard to obtain in practice. Indeed, recent
research has demonstrated that APR using real-life test suites gen-
erates a substantial number of incorrect patches, over-fitted to the
test suite [8, 44]. Most APR techniques are organized (implicitly
or explicitly) as a search problem and consciously limit the repair
search space to keep the repair process viable. This inevitably also
curtails the scope of potential repairs, with state of the art APR
techniques [20, 42, 49, 50] correctly fixing less than 10% of the bugs
in publicly available bug datasets such as Defects4J [21]. These
limitations present significant challenges to the practical adoption
of test suite-based APR techniques.

A noteworthy related trend has been the increasing deployment
of static-analysis-based bug finding tools in development practice.
Over the last several years, Synopsys’ Coverity Scan has identified
over 1.1 million defects in over 4,600 active open source software
(OSS) projects, with more than 600,000 of these defects actually
fixed by developers [45]. This trend is mirrored in industry, as
companies such as Google [41], Facebook [6], and Microsoft [5]
have actively integrated static analysis tools into their development
flows. However, the reported bugs still need to be investigated,
diagnosed, and fixed manually. In fact, recent case studies have
recognized this aspect as a significant barrier to the widespread
adoption of static-analysis-based bug finding [41]. In the sequel we
use the term static analyzer (SA) as shorthand for a static-analysis-
based bug finding tool.

This landscape has motivated some interesting solutions to prac-
tical program repair, backed by static analysis. Development envi-
ronments such as IntelliJ [19], Eclipse [18], and Visual Studio [35]
now offer a “quick fix" recommendation feature to fix simple pro-
gramming errors automatically. However, these extensions work
off a manually defined set of fix templates and therefore cannot be
(automatically) enriched with past bug-fixing experience and/or

613

https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/3338906.3338952


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

customize their bug-fixing to a particular development setting. Fur-
ther, these tools seem to be unable to generate more comprehensive
fixes such as the ones in Figure 1. In recent work, the FootPatch
tool [47] proposed the automatic detection and repair of heap prop-
erties using static analysis. However, its patch generation is specifi-
cally developed for the given class of bugs and non-trivial to extend
to other arbitrary bug classes.

Our approach. In this work we propose a learning-based static
program repair approach that is comprised of two key elements:
(1) it uses an off-the-shelf static analyzer, such as FindBugs [2],
Infer [6], or error-prone [13], as an oracle, to identify potential
bugs and also to certify a patch as a viable fix for such a bug, and
(2) it learns repair strategies from real patches mined from Big
Code. This eliminates dependence on a test-suite while leveraging
the now widely used static analyzers. The patch generation nicely
complements the SA’s bug detection, increasing the usability of
both technologies. Our learning-based approach is quite general in
that it is not tied to a specific class of bugs or repair strategies. At
the same time it can learn strategies very specific to each bug type
reported by the SA tool, potentially increasing repair accuracy.

In order to learn repair strategies from example patches our
approach uses a specially-crafted DSL to describe the strategies as
programs and a synthesis algorithm to generate the programs. A key
distinguishing feature of our approach is that it views each repair
as a set of related edits emanating from a root cause. It identifies this
root cause as a primary node in the abstract syntax tree (AST) of
the program and describes each of the edits relative to this primary
node, using a combination of syntactic and semantic references.
Crucially, such a primary node is often directly implicated in the
SA violation itself or easily identified from it. This view of repair
integrates well with our use-case of repairing SA violations, while
giving our approach its expressiveness and generalization ability.

Recently, Liu et al. [30] published an extensive case study also
targeting the use case of deriving generic fix-patterns to repair
SA violations from open-source projects. However their underly-
ing process is entirely manual wherein the authors manually sift
through a corpus of mined patches that are clustered using CNNs
and try to manually derive fix-patterns that may repair other in-
stances of the same violation. The patterns learned also need to
be applied manually. Phoenix addresses the significant technical
challenge of automating this entire process.

Our approach falls in the category of Programming by Exam-
ple (PbE) techniques [29], a sub-field of inductive programming.
The objective of PbE is to synthesize a program from an incom-
plete specification consisting of a (often small) set of input-output
examples. PbE was popularized by the FlashFill work [15], and
thereafter applied in a variety of domains such as data extraction
from text files [25], interactive parser synthesis [28], table trans-
formations [11], synthesizing SQL queries [48] etc. The PbE tech-
nique closest to our work is Refazer [40] which aims to learn from
repetitive code edits and re-apply them in future contexts. The
key difference between Refazer and our approach is that while
Refazer characterizes (and learns) changes as a set of independent
edits, each characterized by its own code context, we learn each
patch as edits syntactically and semantically related to a primary
node. As shown in Section 4.7 (RQ3) this structure is essential to

learning from and correctly reproducing sophisticated patches, for
instance the one in Figure 1.

We realize our patch-learning and recommendation solution
for SA violations in a system called Phoenix, that includes a fully-
automated pipeline that mines and cleans patches for static analysis
violations from the wild. Using this mining component we assemble
a corpus of 5,389 unique violations and patches from 517 GitHub
projects. In a cross-validation study on this corpus Phoenix success-
fully produced 4382 bug-fixes, with a recall of 85% and a projected
precision (the ground truth manually computed on a 10% random
sample of the patches) of 54%. We further applied Phoenix to latest
revisions of another 5 GitHub projects, where Phoenix produced
94 patches to previously unknown bugs, 19 of which have already
been accepted and merged by the development teams. To the best of
our knowledge this constitutes, by far the largest application of any
automatic patch generation generation technology to large-scale
real-world software systems.

The main contributions of this paper are as follows:
• Technique: A technique for synthesizing bug-fixes for static
analysis violations by learning repair strategies from a few ex-
amples, using a novel DSL-based synthesis algorithm.
• System: A fully-automated pipeline called Phoenix, for mining
and cleaning patches from the wild, as well as learning repair
strategies and recommending patches for new violations.
• Cross-validation study: A large-scale cross validation study of
Phoenix on 5,389 unique violations and patches mined from 517
GitHub projects, along with a user-study of 465 patches gener-
ated by Phoenix to quantify the quality of its patch generation.
• Study on open violations: A study of fixing unknown bugs
from a separate set of 5 GitHub projects.
• Dataset: The complete corpus of patches, mined from GitHub,
as well as generated by Phoenix, along with the (Phoenix-
synthesized) repair strategy used to produce each patch (avail-
able at https://figshare.com/s/8ba50b84deee6a826ced ).

2 MOTIVATING EXAMPLE

In this section, we motivate our technique using the example in
Figure 1. Consider the program in Figure 1a, extracted from Atomix,
a distributed-systems framework. FindBugs reports the violation
WMI_WRONG_MAP_ITERATOR (described in Figure 1f) at line 9 in Figure
1a (marked by ⊗). It flags the use of the keySet iterator in line 1,
and the subsequent calls to get in lines 9-10, where this additional
lookup could be eliminated by using a (key, value) iterator given by
entrySet. All the relevant fragments are enclosed in a black box.

Figure 1b shows a patch in diff form, derived from commit 0e0f94
in the same project. The high-level repair strategy used in the patch
involves four inter-dependent steps, as shown below. The portion
of code involved in each step is highlighted with a separate color in
both the examples. The line numbers are with respect to figure 1b.
• Change keySet to entrySet (lines 1-2, 111)
• Introduce a new iterator variable with a parametrized type

Map.Entry<keyType, valueType>. (lines 1-2, 111)
• Revive the original iterator variable at the beginning of the
loop body (line 3, 111 )
• Replace all calls to get on the map variable with a call to

getValue on the new iterator (lines 8-11, 111 )

614

https://figshare.com/s/8ba50b84deee6a826ced


Phoenix: Automated Data-Driven Synthesis of Repairs for Static Analysis Violations ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 for (Long segId: segs.keySet()) {
2 Map.Entry<Long,JournalSeg<E>> prevEntry =

segs.floorEntry(segId-1);
3
4
5 if (!prevEntry != null) {
6 JournalSeg<E> prev = prevEntry.getValue();
7
8
9 ⊗ if (prev.lastIndex() != segs.get(segId).index() - 1) {
10 log.warn("Found misaligned seg {}", segs.get(segId));
11 segs.remove(segId);
12 }
13 }

(a) Example 1 (Buggy)

1 - for (Long segId: segs.keySet()) {

2 + for (Map.Entry<Long, JournalSeq<E>> entry: segs.entrySet()) {

3 + Long segId = entry.getKey();

4 Map.Entry<Long,JournalSeg<E>> prevEntry = segs.floorEntry(segId-1);
5 if (!prevEntry != null) {
6 JournalSeg<E> prev = prevEntry.getValue();
7
8 - ⊗ if (prev.lastIndex() != segs.get(segId) .index() - 1) {

9 + ⊗ if (prev.lastIndex() != entry.getValue() .index() - 1) {

10 - log.warn("Found misaligned seg {}", segs.get(segId));

11 + log.warn("Found misaligned seg {}", entry.getValue());

12 segs.remove(segId);

(b) Patch Example 1 (Diff)

1 RepairStrategy("WMI_WRONG_MAP_ITERATOR", rule) where

2 rule = ApplyFixes(pNode, fix1, fix2, fix3, fix4)

3
4 // Primary Node Filter

5 pNode = N = MatchContext(pCtx, SAnalyzerReport())

6 pCtx = (id.MethodName == get)

7
8 // Get Edit Locations

9 eLoc1 = Visit(N.arg(0).decl().parent().body)

10 eLoc2 = Visit(N.caller().decl().deref().parent()((id.methodName == keySet) &&

11 (id.enclosingLoop.containsSrcLine))

12 eLoc3 = Visit(N.arg(0).decl())

13 eLoc4 = Visit(N.caller().decl().deref().parent()((id.methodName == get) &&

14 (id.enclosingLoop.containsSrcLine))

15 // Apply Edits

16 fix1 = Map(L -> Edit(L, op1), eLoc1)

17 op1 = Insert(0, CNode(VarDeclStmt, N.arg(0).inferredType,
18 N.arg(0),
19 CNode(Call, CNode(Name, newvar),
20 CNode(Name, getKey))))
21
22 fix2 = Map(L -> Edit(L, op2), eLoc2)

23 op2 = Replace(CNode(Call, L.caller(), CNode(Name, entrySet)))
24 fix3 = Map(L -> Edit(L, op3), eLoc3)

25 op3 = Replace(CNode(VarDecl, CNode(ParameterizedType,

26 CNode(Type, CNode(Name, Map.Entry)),
27 L.type, N.inferredType),
28 CNode(Name, newvar)))
29 fix4 = Map(L -> Edit(L, op4), eLoc4)

30 op4 = Replace(CNode(Call, CNode(Name, newvar), CNode(Name, getValue)))

(c) Repair Strategy learnt by Phoenix

1 - for (String url: parsedLinks.keySet()) {

2 + for (Map.Entry<String,

3 + Map<String, String>> e: parsedLinks.entrySet()) {

4 + String url = e.getKey();

5 - ⊗ RiakLink link = parseOneLink(url, parsedLinks.get(url) );

6 + ⊗ RiakLink link = parseOneLink(url, e.getValue() );

7 if (link != null) {

(d) Patch Example 2 (Diff)

1 - for (String name: insQueries.keySet()) {

2 + for (Map.Entry<String,

3 + String> newvar: insQueries.entrySet()) {

4 + String name = newvar.getKey();

5 - ⊗ String sqlQuery = insQueries.get(name);

6 + ⊗ String sqlQuery = newvar.getValue();
7 List<List<Object>> params = insParams.get(name);

(e) Patched Violation (Diff)

WMI_WRONG_MAP_ITERATOR
Inefficient use of keySet iterator instead of
entrySet iterator. This method accesses the
value of a Map entry, using a key that was
retrieved from a keySet iterator. It is more
efficient to use an iterator on the entrySet
of the map, to avoid the Map.get(key) lookup.

(f) Findbugs Description for Figure 1

Figure 1: Motivating Example

Figure 1d shows another patch for the same violation that
uses the same strategy, extracted from commit 826021 in the
Riak-Java-Client repository. Automatically learning such a strat-
egy from these two patches involves several challenges. Firstly,
FindBugs only flags the line containing the call to get (marked
as ⊗), not all the locations that require an edit. Secondly, the lo-
cations are inter-dependent – the strategy should not apply edits
at irrelevant locations. For example, not all method calls on segs

need to be replaced by getValue (line 4 in figure 1b). Finally, the
required edits are not local in the sense that the AST node needing
the edit (highlighted in colors) does not contain all the information
required to perform the edit. For example, the introduction of the
new entrySet iterator (line 2 in figure 1b) requires a type that needs
to be inferred from the map being iterated on. Such information
may not even be present syntactically in the source AST if the map
is acquired from a class in a separate file.

Phoenix automatically learns this strategy from the two patches
in 1b and 1d, expressed in its internal DSL as shown in figure 1c.
The color codes indicate the code fragments in the examples catered
to by the corresponding component in the strategy. The strategy
involves three stages as given below. All lines referred to are with
respect to figure 1c unless otherwise stated.

Stage 1 (Lines 5-6) : Given the report by the static analyzer, find
a primary node – an AST node that serves an anchor for locating
and applying edit operations. In our example, the primary nodes are
the AST nodes corresponding to the code fragments highlighted
with a red frame (lines 8, 5 in figures 1b, 1d resp.). The node is
found by applying a filter to all AST nodes potentially flagged by
the analyzer. In this case, the filter outputs all invocations with
method-name as get, included in the line flagged by the analyzer.

Stage 2 (Lines 9-14) : Find all the edit locations relative to the
primary node via AST visitors. Here N stands for the primary node.

615



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

For example, the visitor in line 12 finds the iterator node to be
replaced by visiting the first argument of the method-call corre-
sponding to the primary node (name), and then its declaration (in
the for-loop). Since visitors can visit multiple nodes, they may also
have a context-matcher. For example, the visitor in lines 13-14 goes
to all the dereferences of the map, and finally its parent. Since there
may be multiple uses of the map in various contexts, the matcher
zeroes in on the uses where parent is a call to get, and the enclosing
loop contains the line flagged by Findbugs. The latter condition
prevents any replacements of get by getValue outside the loop.

Stage 3 (Lines 16-30) : Apply edits at all the locations. Edits can be
inserts, replacements or deletions. CNode indicates a concrete AST
node and leaf nodes are in bold. Recall that many edits are non-local
- they solicit AST elements from elsewhere as well. To represent
such edits, the nodes in the edit can be referential. For example,
in lines 25-28, the parameterized type is constructed using visitors
L.type and N.inferredType, which access the declared type of the
original iterator and the return type of the call to get respectively.

Figure 1e shows the result of applying this strategy to an unseen
violation in the Dari repository. The strategy finds only one can-
didate for the primary node - the call to get in line 5 enclosed in
a (red frame). It then finds all the edit locations and applies edits
relative to this node. The strategy fixes the violation correctly, only
needing the user to suggest a name for the newvar variable.

Refazer is not able to learn such a strategy due to its simpler
AST pattern-matching component. It is able to learn the raw edit
operations in this case, but over-generalizes and applies edits at
irrelevant locations such as replacing the get at line 7 in figure 1e.
Phoenix learns to avoid this by only going over the dereferences
of the map in question (lines 13-14 in Figure 1c). However, Refazer
was targeted towards the domain of learning repetitive, purely syn-
tactical code edits, where it works quite well. Phoenix additionally
targets the cases where there are multiple edits, each interlinked
with the other. This is made possible by our novel master-slave
approach of representing edits, wherein the primary node serves
as the reference point for all edits.

This patch is also out-of-scope for current Automated Program
Repair (APR) techniques as they typically suggest one-line or at
most one-hunk repairs. This is largely due to the rather broad
transformation schemas that are specified/learned to target the
much larger class of functional repairs, where such a patch cannot
be generated due to the subsequent combinatorial explosion of
repair candidates. Focusing on static analysis violations that often
have standard repair strategies allows Phoenix to produce fairly
sophisticated and non-localized repairs such as the one in Figure 1e.

3 APPROACH

3.1 Overview

Figure 2 shows the high-level overview of Phoenix. There are three
main stages - mining patches for static-analysis violations, learning
repair strategies from the mined patches, and fixing open violations.

For mining patches, Phoenix collects open-source Java repos-
itories, and runs the static-analyzer (FindBugs) on each commit
to obtain a list of static-analysis violations for each analyzed com-
mit. Phoenix then applies a violation-tracking procedure to obtain
the violations that were fixed as well as the corresponding patch

that fixed them (Section 3.2). This yields a collection of patches, on
which it further applies a cleaning procedure (Section 3.3) to filter
out edits that are irrelevant to the removal of the violation. These
cleaned patches constitute a database of patches.

Phoenix then uses a novel synthesis algorithm (Section 3.5) to
learn generic, high-level repair strategies in a special DSL (Sec-
tion 3.4). Finally, these strategies can now be applied to unseen,
buggy source code to generate fix suggestions (Section 3.6).

3.2 Collecting Patch Examples

For collecting examples of static analysis violation fixes, we use
exactly the same approach developed in Liu et al.’s work [30]. We
first collect Java projects with at least 500 commits, run the static
analyzer (Findbugs) and collect violations for all revisions. Note that
there are occasional bad commits that leave the code uncompilable
or unanalyzable. We ignore such revisions.

Then for every consecutive pair of analyzed revisions, we apply
the violation tracking procedure in [1] to match up violations to
identify the ones that have disappeared. This is achieved by certain
heuristics applied on top of the output of a diffing algorithm [37].
The violations that have disappeared are either because of an edit
in the source file (fixed), or because of external reasons. We are
interested in the former, as the edits essentially represent a patch
for this violation. We collect all such fixed violations to form our
patch database. We refer the reader to [1, 30] for further details.

3.3 Cleaning Patches

The patches obtained from Section 3.2 are not quite useful by them-
selves. This is because they often contain edits irrelevant to the
fixing of the violation, these can severely affect the quality of pat-
terns generated by our learning algorithm. Hence we employ a
patch-cleaning procedure to remove these irrelevant edits.

The key idea is that we can model this problem as failing test-
case minimization problem, where a test-case corresponds to the
application of an edit, followed by a run against the oracle (static
analyzer). The test-case fails if the violation goes away. Thus the
minimal test-case would correspond to the minimal set of edits re-
quired to remove the violation. We can then use a delta-debugging
approach [54] to solve this problem instance as follows. We first
try to form minimal clusters of edits such that each cluster, when
applied to the source, is compilable. This can be done using de-
pendency analysis with the help of the compiler. We then use the
delta-debugging algorithm as is, to obtain the minimal set of such
clusters the together represent the minimal set of edits that when
applied to the source, removes the violation in question.

3.4 Domain Specific Language

We now describe our DSL for representing repair strategies and
explain the rationale behind the main components. Figure 3 gives a
formal description of our language and its syntax.

A Repair Strategy S consists of a name, and a rule which de-
scribes the transformation to be applied. A rule consists of a context-
matcher to locate an AST node we call the primary node, and a listL
of fixes. A fix F in L is mapper that applies edit operations to a set
of locations (AST nodes) obtained by traversing the AST, starting
from the primary node through a visitor. An edit operation is one
of three AST-based operations - inserts, deletes and replacements.

616



Phoenix: Automated Data-Driven Synthesis of Repairs for Static Analysis Violations ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Patch 
Example 

Collection

Static
Analysis Tool

Repair 
Suggestion

Re
po

s

...

. . .

. . .

...

Ty
pe

 X

Patch
Examples...

...

Repair 
Strategies

Ty
pe

 X

...
...

Fix
Suggestions

. . .. . .

Project Under Development

Newly-
Discovered
Violation

Repair Strategy
Synthesis

Domain Specific
Language

Figure 2: Overview of Phoenix system.

strategy ::= Strategy(name, rule)
rule ::= Apply(primaryNode, fix1, . . . , fixn)

primaryNode ::= MatchCtx(ctx, SAnalyzerReport())
fix ::= Map(λL→ Edit(L, operation), editLoc)

editLoc ::= Visit(primaryNode, visitor)

visitor ::= astpath(ctx)
ctx ::= astpath(pred) | ctx1 ∧ ctx2

astpath ::= vpath1 ◦ vpath2
| N | L | id | child(i) | parent | decl | use | . . .

pred ::= true | key = value | key , value
key ::= nodeType | methodName | containsSrcLine | . . .

operation ::= Insert(pos, ast) | Delete() | Replace(ast)
ast ::= const | ref

const ::= ConstNode(kind, value, ast1, . . . , astn)
ref ::= Visit(editLoc, visitor)

| Visit(primaryNode, visitor)

Figure 3: Our DSL for representing Repair Strategies

1 TreeMap<Long, JournalSeg<E>> segs = new TreeMap<>() ;
2
3 · · ·
4 for (Long segId : segs .keySet()) {
5 Map.Entry<Long,JournalSeg<E>> prevEntry =

segs .floorEntry(segId-1);
6
7 · · ·
8 ⊗ if (prev.lastIndex() != segs .get(segId) .index() - 1) {
9 log.warn("Found misaligned seg {}", segs .get(segId));

derefderef

deref decl

deref

caller
Figure 4: Examples of High-Level AST Edges

Primary Nodes : A primary node P is an AST node that can be
considered as the root cause of the static-analysis violation. For
example, the primary node in figure 1a is segs.get(segId) . The
primary node serves as an anchor point for finding all the necessary
repair ingredients such as the edit locations, and AST nodes for
replacement/insertion. This is similar to how developers approach
such problems. They consult the static analysis report, find the root
cause, and devise a mental strategy for fixing the violation starting
from that point.

In general, this node should be considered as an additional in-
put provided by the static-analyzer, along with the patch (when
learning) or the buggy input (when applying). In some cases, such
as ours, this input is unavailable as the analyzer only works on
byte-code. Hence, we include a context-matcher to further filter
out the primary node amongst multiple candidates if any.
Context-Matchers : A Context-matcher C is a boolean function
that checks the properties of the surrounding nodes of a target

node (including itself). The predicates in C (pred in figure 3)
check for equality or inequality of key-value pairs defined indi-
vidually for each AST node. For example, the key-value pairs for
a MethodInvocation node can be the node type, the declaring
class, the return type, type of parameters, method name, etc. Sur-
rounding nodes are visited using AST edges (child, parent, etc.)
that are described in the next paragraph. An example of C is
id.parent(nodeType==ForStmt) which checks if the parent of the
current node (represented by id is a for-statement.
Visitors : A visitorV consists of a path in an AST followed by a
context-matcher that is applied on the target node. The edges in
the patch can be structural(child, parent, etc.) as well as semantic
(declaration, use, dereference, writes, type etc.). Examples of such
edges for the code fragment in figure 1a are shown in figure 4.
Semantic edges enable connections between AST nodes that are
far-apart structurally, but share meaningful relationships with each
other. Consequently, they enable better generalization across input
programs as they bridge gaps between nodes that may have widely
varying structural connections across two I/O examples. For exam-
ple, a path from a variable to its declaration is better described by
the decl edge, rather than simple structural edges such as child
and parent.

The context-matcher offers further precision if necessary in
cases where multiple nodes may be visited by the same path. For
example, a path containing the deref edge in figure 4 which con-
nects a variable declaration to all its dereferences may need further
disambiguation in its usage, as was necessary in the motivating
example.
Edit Operations : An edit operation can be one of three kinds -
• Insert(ast, pos)- Insert ast at position pos in the current sub-tree
• Delete()- Delete the current sub-tree
• Replace(ast)- Replace the current sub-tree by ast
The concrete new/replacement ASTs used in the insert/replace oper-
ations respectively may be overly specific to an input. Therefore, to
enable generalization, these ASTs can be a mix of concrete nodes as
well as referential nodes. Referential nodes are obtained by travers-
ing the AST starting from the edit location or the primary node
using visitors, and selecting the node(s) to use to build the AST.

Our core contribution is the use of high-level, semantic AST
edges and their use in visitors and context-matchers in defin-
ing expressive repair strategies, along with a synthesis algo-
rithm to handle the consequent space explosion. Our novel com-
bination of visitor paths and context-matchers enables power-
ful higher-order pattern matching wherein the pattern itself con-
tains references to nodes in the target AST. For example, Phoenix
can learn patterns such as - “All calls to get where the caller is
the same as the one in the invocation flagged by the analyzer” (the

617



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

segs.get(segId)start

segssegId

segs.keySet()
Long segId

Long segId: segs.keySet()

segs
keySet()

TreeMap<Long,JournalSeg<E>> segs = new TreeMap<>()

segs.get(segId)

segssegId

callerpar
arg(0)

par

par
param

par

expr

decl

caller par

methodName

par

caller
par

arg(0) par

declderef

decl

deref
deref

decl

Path 1 : caller.decl.deref.par
Path 2 : arg(0).decl.par.expr.caller.decl.deref.par

Figure 5: Partial NFA representing multiple paths from primary

node to calls to get that need editing for I/O example in figure 1a.

reference lies in the underlined portion). This is exactly the pattern
encoded in the visitor in line 13 in figure 1c and is out-of-scope
for Refazer, which although employs a similar DSL to Phoenix,
only supports patterns containing concrete node types or strings
to match against.

3.5 Learning Repair Strategies from Examples

We now describe our algorithm for learning repair
strategies. Formally, the input to Phoenix is a list I =
{(Pi1 ,Po1 ,B1), . . . , (Pin ,Pon ,Bn )} where Pi is the buggy in-
put, Po is the patched output, and B is the bug-report by the
static-analyzer. B should contain the violation type, and the
line-number in the source corresponding to the buggy location.
Phoenix then learns a set R = {r1, . . . , rk } of repair strategies that
collectively covers the transformations required by the all the
examples in the input, with an aim to minimize k .

The synthesis algorithm in Phoenix goes through two broad
stages - (1) Compute and represent all possible strategies for all I/O
examples individually and (2) Pick the fewest number of strategies
amongst these that can solve all the I/O examples. Figure 6 formally
describes all the steps involved. We start from the procedure Synth.
Locating Primary Nodes and Constructing Edits : In line 3, we
locate the primary node candidates based on the analysis report for
each input (Pi ,Po ,B) tuple. We then instantiate a training example
for Phoenix for each primary node individually along with the
edits involved in the transformation described by Pi and Po . An
edit contains a visitor from the primary node to its location, and
the operation itself, which in case of replacements and inserts, can
contain visitors to nodes. GetEdits describes this construction.

At this point, we need to store all possible visitors as we are not
certain which one would generalize best across all examples (line
33). As there can be arbitrarily many, we represent the collection
compactly as an NFA where states are AST nodes, the initial state is
the source node, and the accepting states are the destination nodes.
An example is shown in figure 5 which encodes paths from the
primary node to all the invocations of get that need to be replaced
in figure 1a in the motivating example. It contains paths apart from
the visitor used in line 13 in figure 1c. The dark, bold edges are
used in the paths, while the red dashes demonstrate how a path
can lead to a non-accepting state. These NFAs are similar in spirit
to the VSAs used in [15] to represent all possible programs.

In order to compute common paths between two sets of visitor
paths, we convert these NFAs to DFAs using the standard construc-
tion [17]. However, such a conversion may be too expensive given
the large number of nodes and edges in the AST. However the
key insight is that truly useful visitors are not usually very long -
therefore, during the construction, we only add sets of states that
are reachable within a maxLen (we use 8) number of steps (line 47).

We add references to the edit operations in a similar fashion
(lines 38, 40-43). If the involved edit is an insert or a replace, we go
over all the nodes in the subtree of the node being added, and store a
reference in the form of a DFA containing all paths from the primary
node or the edit location to all the syntactic matches of that node in
the same AST. This is the step that allows our strategies to fetch
repair ingredients from elsewhere in the AST. This construction
concludes the first stage of the algorithm.
Clustering Edits and Training Examples : We now generalize
edits across multiple training examples. Edits are grouped together
using a greedy pair-wise clustering algorithm (line 7). At each
iteration, we select the pair of edits with the highest non-zero
compatibility score, and combine them into one. The procedure
stops when all pairs are incompatible (score is zero).

Two edits are considered compatible (lines 48-51), if they have
a common path from the primary node i.e., their location visitor
DFAs have a non-empty intersection, and the AST components (if
any) are either equal, or the unequal nodes share a reference i.e.,
their corresponding DFAs have common strings. The score captures
the degree of similarity - sharing more number of paths, and more
concrete AST nodes leads to a higher score.

Once the edits are clustered, the training examples are grouped
together if they share the same edits (line 8). Training examples
that are grouped together share the same repair strategy.
Assembly : For each group of clustered training examples, we
extract the best visitors from the DFAs in each edit by treating the
DFAs as graphs and employing Dijkstra’s algorithm [9] with the
cost metric as a function of the length, the edges involved, and the
context-matchers required, if any, in the visitor (lines 28-32). In
essence, visitors that are short, use semantic edges, and employ
none or small context matchers are preferred.

Finally, we get all the primary nodes, and all the other nodes
which also belong to the region flagged by the analyzer, and syn-
thesize a context-matcher for disambiguating the primary nodes.
Synthesis of Context-Matchers : Recall that a context-matcher
is a conjunction of positive and negative predicates which use
attributes of AST nodes to match against a node. Its synthesis
(lines 60-63) involves taking as input a set of positive and negative
examples (nodes). The desired output is a conjunction of predicates
that are true for the positive but false for the negative examples.

The problem can be reduced to finding the least-cost subset of
the predicates that together evaluate to false for all the negative
examples, and thus can bemodeled as a set-cover problem for which
we use the loд(n)-optimal greedy approximate algorithm [7].

3.6 Suggesting Fixes

Applying the learned strategies is relatively straightforward. Given
a learned strategy, the buggy source, and the corresponding static-
analysis report, we first find k primary node candidates using the

618



Phoenix: Automated Data-Driven Synthesis of Repairs for Static Analysis Violations ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Synth (I ≡{(Pi1, Po1, R1), . . . , (Pin , Pon , Rn )})
1: trainingSet← empty list

2: for each (Pi , Po, R) ∈ I do

3: pNodeCands← GetPrimaryNodeCands(Pi , R)
4: for each pNode ∈ pNodeCands do
5: edits← GetEdits(Pi , Po , pNode)
6: trainingSet.append((Pi , pNode, edits))
7: editClusters← ClusterEdits(trainingSet)
8: clusters← ClusterTrainingSet(trainingSet, editClusters)
9: for each cluster ∈ clusters do
10: edits← GetAllEdits(cluster, editClusters)
11: FinalizeEdits(edits)
12: pNodes, nonPNodes← PartitionNodes(cluster)
13: primCtx← SynthesizeCtx(pNodes, nonPNodes)
14: output AssembleStrategy(primCtx, edits)

ClusterEdits (trainingSet)
15: worklist← all edits in all points in the trainingSet
16: e1 , e2 ← GetMostCompatiblePair(worklist)
17: while e1 is valid ∧ e2 is valid do

18: Combine(e1 , e2)
19: worklist← worklist − e2
20: e1 , e2 ← GetMostCompatiblePair(worklist)
21: return worklist

Combine (e1 , e2)
22: e1 .locDFA← DFAIntersect(e1 .locDFA, e2 .locDFA, maxLen)
23: if e1 and e2 are Inserts or Replacements then
24: CombineASTs(e1 .ast, e2 .ast)

CombineASTs (a1 , a2)
25: a1 .ref← DFAIntersect(a1 .ref, a2 .ref, maxLen)
26: for each child1 , child2 of a1 , a2 do
27: CombineASTs(child1 , child2)

FinalizeEdits (edits)
28: costMetric = λv→ F(cost of edges in v, cost of ctx-matcher of v, len(v))
29: for each edit ∈ edits do
30: edit.loc = RunDijkstra(edit.locDFA, costMetric)
31: for each node n with refs in edit.ast do
32: n.ref = RunDijkstra(n.ref, costMetric)

GetEdits (Pi , Po , pNode)
33: srcAst← GetAugmentedAST(Pi )
34: for each edit ∈ ASTDiff(Pi , Po) do

35: loc← GetRootLocation(rawEdit)
36: locDFA← GetAllPaths(pNode, loc, srcAst, maxLen)
37: if edit is Insert or Replace then
38: AddReferences(edit, pNode, loc, srcAst)
39: return all collected edits

AddReferences (edit, pNode, loc, srcAst)
40: for each node ∈ GetReplacementOrInsertedNode(edit) do
41: matches← GetASTMatches(node, srcAst)
42: if matches , ϕ then

43: node.ref← GetAllPaths({pNode, loc}, matches, srcAst)

GetAllPaths (srcs, dsts, augmentedAst)
44: nfa← augmentedAst.copy()
45: nfa.setInitial(srcs)
46: nfa.setAccepting(dsts);
47: return NFA-to-DFA(nfa, maxLen)

CompatibilityScoreEdit (e1 , e2)
48: if e1 , e2 not of the same kind return 0
49: locationScore← NumCommonStrings(e1 .locDFA, e2 .locDFA, maxLen)
50: astScore = CompatibilityScoreAst(e1 .ast.root, e2 .ast.root)
51: return astScore * locationScore

CompatibilityScoreAst (n1 , n2)
52: score← (type(n1) = type(n2)) + NumCommonStrings(n1 .ref, n2 .ref, maxLen)
53: if score = 0 return 0
54: if number of children of n1 and n2 differ return 0
55: for each child1 , child2 of a1 , a2 do
56: cScore← CompatibilityScoreAst(child1 , child2)
57: if cScore = 0 return 0
58: score← score + cScore
59: return score

SynthesizeCtx (posEx, negEx)
60: posPredicates← GetPosPredicates(posEx)
61: negPredicates← GetNegPredicates(negEx)
62: preds← Filter(λp→ p(posEx), posPredicates ∪ negPredicates)
63: return GreedySetCover(preds, negEx)

Figure 6: Learning Algorithm

primary-node context-matcher. We then generate k fix candidates
by considering each of them as the primary node separately. This
is followed by a filtering step that removes uncompilable fixes or
those that failed to remove the static-analysis violation.

The remaining suggestions are ranked based on the rank of the
repair strategies employed to produce them. The rank of a repair
strategy is the size of the union of the sets of input examples used to
learn each of the edits contained in the strategy, with a higher value
indicating a higher rank. The rationale is that more the number
of examples used, better is the support for that strategy, which
indicates a higher chance of it being useful.

4 EVALUATION

4.1 Implementation

We have implemented our patch-collection, cleaning and synthesis
algorithm in a tool called Phoenix. The patch collection component
is written in Python and the cleaner and synthesizer components are
written in Java. We use GumTree [10] to compute AST differences
and employ FindBugs [2] as the static program analyzer.

4.2 Dataset

We use the same set of repositories as in Liu et al.’s study [30] as-
sembled using GHTorrent [14]. The project should (1) have at least
500 commits, (2) have the main language as Java, (3) be an origi-
nal project (i.e., not forked from another project), (4) use Apache

Table 1: Summary of benchmark subjects.

#Projects 517 #Commits 3,549,436
#Analyzed commits 290,519 #Fixing commits 21,028
#Collected patches(cleaned) 11,865 #Unique patches 5,389
#Violation types 234 Collection time 2 months

Maven, and (5) have at least two revisions in which FindBugs can
execute. In the original study, there are 730 projects in total. We
could process 517 of these in our time-budget of 2 months.

For each project, we use the tracking procedure described in
Section 3.2 to collect 21,028 patches that fix violations identified by
FindBugs. Applying the cleaning procedure in Section 3.3 yields
11,865 patches out of which 5,512 are unique, covering 234 dis-
tinct violation types. The cleaning discards multi-file patches, since
currently Phoenix can only learn from and generate single-file
patches. Also, the number of unique patches is lower as merge com-
mits can cause duplication of patches across revision pairs. Finally
we discard patches whose violation category only contains one
project. This yields a final set of 5,389 patches. Table 1 contains all
the statistics.

4.3 Experimental Setup

Data-collection for this paper was performed on two 64-core ma-
chines, each with Intel Xeon 2.60 GHz processors with 128GB of
memory running Ubuntu 16.04 LTS 64-bit. All other experiments

619



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

Table 2: Leave-one-project-out Cross Validation Results

#Dataset patches 5,389 #Manually-inspected patches 465
#Successful fixes 4,596 #Semantically-equiv. (Top-1) 161 (35%)

#Semantically-equiv. (Top-5) 203 (44%)
#Correct (Top-1) 252 (54%)

Recall 85% #Correct (Top-5) 299 (64%)

were performed on an 8-core machine with Intel i7-4790 3.60GHz
CPU, 16GB of memory running Ubuntu 16.04 LTS 64-bit.

4.4 Results

Our evaluation addresses the following research questions:
RQ1: How effective is our synthesis algorithm?
RQ2: Can Phoenix fix open static-analysis violations in the wild?
RQ3: How effective is Phoenix versus the current state of the art?

4.5 RQ1: Synthesis Algorithm Effectiveness

To evaluate the learning ability of Phoenix, we perform a project-
level, leave-one-out cross-validation experiment on our database
of 5,389 patches. For each patch in a violation category, we learn
repair strategies from all the patches in other projects in the same
category and apply them to the buggy source in the patch. We then
compute recall as the percentage of cases where at least one fix is
generated. Note that Phoenix only generates a fix if the violation
is removed, as judged using FindBugs.

The results are shown in table Table 2. Phoenix achieves a recall
of 85% indicating that it is able to generalize across projects. How-
ever, there can be multiple possible ways to fix the violation, the
most trivial being deletion of the offending code fragment. Such
fixes may be generated as Phoenix only checks if the violation
is removed, but does not check if source semantics have changed.
Hence to measure the usefulness of generated fixes, we compute
precision by computing the percentage of cases where the gener-
ated fix is semantically equivalent to the ground-truth i.e., the fix
applied by the developer. However, static-analyzers are not used
widely, and it’s quite probable that the developer did not intend
to fix the violation and hence the ground-truth itself may not be
accurate. Therefore, we separately track the cases where the patch
generated by Phoenix is correct i.e., that it fixes the violation in the
right way for that instance.

The two precision metrics described above are difficult to com-
pute automatically, and therefore we perform a manual evaluation
by picking a sample of 465 (∼ 10%) mined patches (proportionately
sample each bug category retaining at least 1 instance).We recruited
eight researchers outside the group of authors for this purpose. The
participants are presented with the top-5 ranked patches generated
by Phoenix for each buggy instance and asked to mark the highest-
ranked patch, if any, that (a) is a semantically equivalent fix, and
(b) the one that is a correct fix. Each bug instance is independently
reviewed by three participants and the majority outcome accepted.
In case of no majority view, i.e., the three reviews identified differ-
ent patches, no patch is reported for that instance. We find that
in 35% and 44% of cases, the top-ranked and top-5 ranked patches
respectively contain a semantically equivalent patch. Further, in
54% and 64% of the cases, the top-ranked and the top-5 ranked
patches contain a correct patch. Given that the only oracle we use

is the static analyzer, the correctness metric is more suitable to
evaluate Phoenix. Overall, the results suggest that Phoenix indeed
learns generic, useful patterns.

4.6 RQ2: Fixing Open Violations in the Wild

The true test of a tool like Phoenix is to produce patches for
open, previously unseen violations that developers are willing to
integrate into their code. To this end, we apply Phoenix to re-
pair open FindBugs violations on five large, popular open-source
Java projects, namely Apache Camel, Flink, Dubbo, Spring-Boot and
Presto-DB). Note that these projects are outside our list of mined
repositories. The results are presented in Table 3. Our procedure for
applying Phoenix on these projects involves four steps - (1) We run
FindBugs and get violations having a rank ≤ 15, priority ≤ 2 and
from a category belonging to the 50 categories having the highest
precision score in our manual study. (2) We apply Phoenix to gen-
erate patches for all of them (3) We manually examine each patch to
check its correctness (4)We submit the true-positive, correctly-fixed
instances to the development team.

The first two columns show the sizes of the projects, indicating
their complexity. The #Total column shows the number of viola-
tions obtained by running FindBugs that satisfy our criteria (141)
and the #Patched column shows the number of violations for which
at least one patch was generated (118), indicating a recall of 84%.
The #Correct column shows the number of violations for which the
patch was correct (94), indicating a precision of 80%. The category-
wise distribution of these correctly fixed violations is given in Table
5. We chose to ignore five categories for our final submission of
patches as the respective violations were either hard to justify to
developers without concrete test-cases, which are themselves dif-
ficult to obtain (specifically concurrency and serialization issues),
or a large fraction of violations in these categories were indicated
as false positives during our manual precision study. We then sub-
mitted the remaining 19 patches, all of which have been reviewed
and merged by the core teams. These patches covered a wide range
of issues including incorrect string processing, performance prob-
lems, random number generation as well as infinite loops. These
results indicate that Phoenix learns effective strategies capable of
repairing unseen violations in the wild.

4.7 RQ3: Comparison against State of the Art

A direct comparison against the current state-of-the-art technique
for learning AST transformations, Refazer[40] is unfortunately not
feasible as the target languages differ (C# vs Java) and it is highly
non-trivial to instantiate, for Java, the Prose framework [39] for
program synthesis that Refazer is based on. Instead, since our DSL
subsumes the one introduced in Refazer, we modify it and the
corresponding synthesis algorithm to approximate the expected
operation of Refazer in our use case. We call the modified version
Phoenix-Baseline.

In Phoenix-Baseline we remove semantic edges from the AST,
eliminate visitor paths completely and only allow positive predi-
cates in context-matchers. We also limit the key-value pairs to the
node-type and concrete node value. However, for a fairer compar-
ison, we also incorporate bug report information in the form of
additional node properties indicating whether they are mentioned

620



Phoenix: Automated Data-Driven Synthesis of Repairs for Static Analysis Violations ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 3: Results of fixing open violations in the wild

Project #Files SLOC #Total #Patched #Correct #Submitted (Merged)

Apache Camel 17,518 1.1m 61 59 49 7
Apache Flink 9,021 1.1m 32 16 11 3
Presto DB 5,174 600k 30 27 25 4
Spring Boot 4,330 250k 5 4 3 2
Apache Dubbo 1,558 110k 13 12 5 3

Total 37,601 3.2m 141 118 94 19

Table 4: Phoenix vs Phoenix-Baseline

Precision

Phoenix Phoenix-Baseline

Overall 60% 33%
Simple 50% 38%
Complex 70% 28%

Table 5: Correctly-fixed Open Violations by Bug Category

Category Count Submitted

JLM_JSR166_UTILCONCURRENT_MONITORENTER 12 ✗
NP_BOOLEAN_RETURN_NULL 44 ✗
SE_BAD_FIELD 13 ✗
RpC_REPEATED_CONDITIONAL_TEST 4 ✗
STCAL_INVOKE_ON_STATIC_DATE_FORMAT_INSTANCE 2 ✗

DMI_INVOKING_TOSTRING_ON_ARRAY 6 6
WMI_WRONG_MAP_ITERATOR 3 3
ICAST_INT_CAST_TO_FLOAT_PASSED_TO_ROUND 2 2
RV_EXCEPTION_NOT_THROWN 1 1
IM_BAD_CHECK_FOR_ODD 1 1
RC_REF_COMPARISON 2 2
VA_FORMAT_STRING_BAD_CONVERSION_FROM_ARRAY 1 1
DMI_RANDOM_USED_ONLY_ONCE 1 1
SBSC_USE_STRINGBUFFER_CONCATENATION 1 1
IL_INFINITE_RECURSIVE_LOOP 1 1

Total 94 19

in the report. Overall. this mimics the fairly basic pattern-matching
and independent treatment of edits in Refazer. We modify the
algorithm to now compute compatibility scores of edits by only
tracking the number of common context-matchers between edits.

We repeat the cross-validation study for Phoenix-Baseline and
the find its recall is 72%, moderately lower than Phoenix’s 85%. This
is because a number of violations reported by FindBugs involve
simple, local one-line fixes. To further scrutinize patch quality, for
both simple, single-line instances, as well as those with complex,
inter-dependent edits we compute precision manually for Phoenix
and Phoenix-Baseline on two sets of 50 patches each. The first
set (Complex) is constructed by sampling 5 patches each from 10
violation types in the database which we identified as involving
the most number of edits. The second set (Simple) is constructed
by sampling 50 patches from the rest of the types. Table 4 presents
these results. Compared to Phoenix, Phoenix-Baseline demon-
strates significantly lower precision on the complex cases, and even
modestly lower on simple instances. Our novel use of primary nodes
as anchor points, and the powerful pattern-matching enabled by
the combination of visitors and context-matchers allows Phoenix
to generate much more sophisticated patches.

5 DISCUSSION

Scope of repair strategies: Phoenix is able to learn a variety of
repair strategies. Figure 7 shows an example of a patch generated
by Phoenix for the expensive in-loop string concatenation flagged
by FindBugs. The patch involves multiple inter-dependent edit
locations, and cannot be generated by existing work like Refazer.

However, there are certain violation types for which Phoenix
currently cannot learn a useful strategy. For example, Figure 8
shows a patch for a violation which flags the use of ‘\n’ instead

1 - String allmsgs = "";

2 + StringBuilder allmsgs = new StringBuilder();

3 for (int i = 0; i < msgs.length; i++) {
4 msgs[i] = msgs[i].replace('\n', ' ');

5 - allmsgs += msgs[i] + "\n\n";

6 + allmsgs.append(msgs[i]).append("\n\n");

7 }

8 - messagesTextPane.setText(allmsgs);

9 + messagesTextPane.setText(allmsgs.toString());

Figure 7: Complex fix generated by Phoenix

1 - writer.printf("%d\n", value);

2 + writer.printf("%d%n", value);

Figure 8: Patch out of scope for Phoenix

of the platform-independent ‘%n’. This involves string operations,
which are not present in the DSL. However, if the AST-diff tool
produces special operations to capture these edits, it is relatively
straightforward to add this capability to Phoenix.

Incorrect variable/method naming styles comprise another cate-
gory of violations Phoenix is ineffective at. Since any patch would
involve project-specific changes, there does not exist a generic
repair-strategy that can be learned by Phoenix.

Efficiency: In the cross-validation study, Phoenix took 40s on
average to learn strategies from all the examples. Further, it took
50s on average to fully process a violation and generate a ranked
list of patch suggestions. The bulk of this time (85%) is spent in com-
pilation and running FindBugs and only 15% to actually synthesize
edits. We believe this can be significantly improved through tighter
integration with the static analyzer. Overall, Phoenix presents a
viable solution for real-time patch generation.

Phoenix vs. [30]: Although Phoenix and [30] both share the
goal of patching static analysis violations, we believe a direct com-
parison between the two would not be very meaningful. This is be-
cause the manual inference of fix-patterns and creation of patches,
performed in [30] allows them to work with fairly abstract fix-
patterns like: “Replace variable by some other variable". Phoenix
would never learn such patterns because of the large search space
of concrete instantiations they include.

6 LIMITATIONS

Repair ranking & scope. Phoenix’s current implementation can
only generate fixes limited to a single file, although we can gen-
eralize the learning algorithm to take sets of patches as a single
input, and introduce edges across ASTs. The ranking procedure for
suggestions in Phoenix is also quite rudimentary, relying solely on
a single oracle (static analyzer) and the number of examples a repair
strategy is learned from. Thus, a less frequently used repair strategy
will always be ranked lower even if it is more appropriate in the

621



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

current context. Conversely, an unsuitable repair strategy may be
ranked high if it is widely used and the static analyzer certifies a
violation fix. An effective ranking procedure should rank repairs in
the context of the code being patched.

Patch mining & cleaning. Phoenix’s mining component is
driven by heuristics, and may be imprecise, especially in violation-
tracking. Its cleaning module is also quite simple, at present. This, in
some cases, results in low-quality patches because of non-removal
of irrelevant edits, as well as loss of good patches because no com-
pilable set of edits could be found. We plan to fix this in the future
by using better program analyses.

Construct validity. Our calculation of precision of patches has
a subjective component due to reliance on manual evaluation. In
particular, judging whether a patch is semantically equivalent or
correct requires manual inspection which may be imprecise. We
try to minimize the effect of this issue by having three reviewers
independently study each patch, and reach consensus by using the
majority view.

7 RELATEDWORK

Static-analysis-based patching. Some tools like FindBugs and
Clang provide "quick fix" suggestions to help developers fix cer-
tain classes of bugs [3], as do IDEs like IntelliJ [19], Eclipse [18],
and Visual Studio [35]. However, these recommendations are in-
stantiated from statically defined bug-fix strategies, while Phoenix
automatically learns these strategies from examples.

FootPatch [47] proposed a static-analysis-based technique for
automatically generating patches for violations of heap proper-
ties, flagged by a static analysis, namely Infer, in this case. Phoenix
shares FootPatch’s goal of generating patches for static analysis vi-
olations, without the use of test-cases. However, FootPatch’s patch
generation is tied to a specific class of violations, while Phoenix’s
approach can, in principle, target arbitrary violation classes, by
learning from their examples. In other related work, Liu et al. de-
scribe a large-scale empirical study on fixing static analysis viola-
tions [30]. Specifically, they manually extract fix-patterns from a
corpus of fixed FindBug violations mined from GitHub, and apply
them to manually fix open FindBugs violations. Phoenix proposes a
novel, fully-automated PbE approach for this problem setting, based
on a custom DSL for specifying repair strategies and a synthesis
algorithm to learn strategies from repair examples.

More recently, Getafix [43], a tool concurrently under develop-
ment at Facebook, uses anti-unification techniques to automatically
infer repair templates similar to [30] and use a special ranking tech-
nique that takes past human-fixes into account to derive the most
plausible patches. We believe their ranking function can augment
our final ranking to further improve our results.

Automated program repair (APR). A typical APR technique
(implicitly or explicitly) explores a space S of possible mutations
to a buggy program P, for one that allows the mutated program
to pass all tests in a given test suite T. Some of these approaches,
such as GenProg [27], ACS [51], SearchRepair [23], µScalpel [4],
ssFix [50], and SimFix [20] mine concrete program snippets from
existing code to construct the repairs. Others, such as PAR [24],
Relifix [46], HDrepair [26], Genesis [31], and CapGen [49], extract
abstract transformation schemas defining the space S, from existing
corpora of patches. Yet others, such as Prophet [32] and Elixir [42]

use features of such a corpus to train a classifier to rank the space
S. Techniques such as SemFix [38], MintHint [22], DirectFix [33],
NOPOL [52], and Angelix [34] use techniques like symbolic execu-
tion, to generate an oracular representation of the repair which is
then synthesized into a concrete repair. Phoenix uses a fundamen-
tally different mechanism of constructing repairs by synthesizing a
repair strategy in a custom DSL from a few examples of the same
kind of bug. This allows it to construct fairly sophisticated, non-
localized repairs while current APR techniques can typically only
create one-line, or at most one-hunk, repairs. Further, these tech-
niques rely on a test-suite while Phoenix’s DSL is designed around
using a static analyzer as the oracle.

Machine-learning based approaches such as [16] use generative-
models to produce repairs and therefore can work without the
aforementioned oracles. However, since it is trained on unlabeled
and unpaired data, it cannot specialize on the various static analysis
violation categories, something which contributes greatly to the
efficacy of tools like ours.

Programming by Example (PbE). Recently PbE has been ap-
plied to a number of different domains [11, 15, 25, 28, 48, 53], each
work proposing a DSL and program synthesis algorithm customized
to its respective application. Refazer [40], the PbE technique clos-
est to our work, learns from repetitive code edits. Refazer was
applied to provide feedback (i.e., patches) for student submissions
of programming assignments in MOOC courses as well as in a sys-
tematic edit scenario, i.e., where a user-provided set of examples
for a target edit is used to replicate the edit at appropriate locations
in a subject system. Refazer characterizes (and learns) changes as
a set of independent edits, each rooted in its own code context. By
contrast, Phoenix views each repair in terms of a primary node, to
which each of the edits is related in a specific way. Phoenix also
employs advanced higher-order pattern matching to achieve far
better generalization. These core differences are reflected in the
DSLs and synthesis methods of the two techniques and for Phoenix
turn out to be crucial to its ability to learn sophisticated patches
correctly (RQ3, Section 4.7).

8 CONCLUSION

In this work we proposed a novel technique for automatically gener-
ating high-quality patches for static analysis violations by learning
from examples. This approach builds on the recent success of static
analyzers, while completely avoiding the use of test-suites as a spec-
ification, which has hampered the progress of traditional APR tools.
We implemented our solution in a system, Phoenix that includes a
fully-automated pipeline that mines and cleans patches for static
analysis violations from the wild, learns generalized executable
repair strategies as programs in a novel Domain Specific Language
(DSL), and then instantiates concrete repairs from them on new un-
seen violations. Using Phoenix we mined a corpus of 5,389 unique
patches from 517 GitHub projects. In a cross-validation study on
this corpus Phoenix successfully produced 4382 bug-fixes, with
a recall of 85% and a precision of 54%. When applied to the latest
revisions of a further 5 GitHub projects, Phoenix produced 94 cor-
rect patches to previously unknown bugs, 19 of which have already
been accepted and merged by the development teams. In future
work we propose to conduct a large-scale user study to further
quantify the practical utility of Phoenix.

622



Phoenix: Automated Data-Driven Synthesis of Repairs for Static Analysis Violations ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Pavel Avgustinov, Arthur I. Baars, Anders S. Henriksen, Greg Lavender, Galen
Menzel, Oege de Moor, Max Schäfer, and Julian Tibble. 2015. Tracking Static
Analysis Violations over Time to Capture Developer Characteristics. In Proceed-
ings of the 37th International Conference on Software Engineering - Volume 1 (ICSE
’15). IEEE Press, Piscataway, NJ, USA, 437–447. http://dl.acm.org/citation.cfm?
id=2818754.2818809

[2] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Softw. 25, 5 (Sept.
2008), 22–29. https://doi.org/10.1109/MS.2008.130

[3] T. Barik, Y. Song, B. Johnson, and E. Murphy-Hill. 2016. From Quick Fixes to
Slow Fixes: Reimagining Static Analysis Resolutions to Enable Design Space
Exploration. In 2016 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 211–221. https://doi.org/10.1109/ICSME.2016.63

[4] Earl T. Barr, MarkHarman, Yue Jia, AlexandruMarginean, and Justyna Petke. 2015.
Automated Software Transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015). ACM, New York, NY,
USA, 257–269.

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commun. ACM 53, 2 (Feb. 2010), 66–75. https://doi.org/10.1145/1646353.1646374

[6] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In
NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA,
USA, April 27-29, 2015, Proceedings. 3–11.

[7] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.
Res. 4, 3 (Aug. 1979), 233–235. https://doi.org/10.1287/moor.4.3.233

[8] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23 (03 2018).

[9] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.
Math. 1, 1 (Dec. 1959), 269–271. https://doi.org/10.1007/BF01386390

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and Accurate Source Code Differencing.
In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE ’14). ACM, New York, NY, USA, 313–324. https:
//doi.org/10.1145/2642937.2642982

[11] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
2017. Component-based Synthesis of Table Consolidation and Transformation
Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 422–436. https://doi.org/10.1145/3062341.3062351

[12] L. Gazzola, D. Micucci, and L. Mariani. 2018. Automatic Software Repair: A
Survey. IEEE Transactions on Software Engineering (2018), 1–1.

[13] Google. 2017. Error Prone. https://errorprone.info/. (2017).
[14] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings

of the 10th Working Conference on Mining Software Repositories (MSR ’13). IEEE
Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/citation.cfm?id=2487085.
2487132

[15] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’11). ACM, New York,
NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

[16] Jacob A. Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L.
Russell, Louis Y. Kim, and Peter Chin. 2018. Learning to Repair Software Vulnera-
bilities with Generative Adversarial Networks. In Proceedings of the 32Nd Interna-
tional Conference on Neural Information Processing Systems (NIPS’18). Curran As-
sociates Inc., USA, 7944–7954. http://dl.acm.org/citation.cfm?id=3327757.3327890

[17] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[18] Eclipse IDE. 2018. Java Editor Quickfix. https://help.eclipse.org/neon/topic/org.
eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm. (2018).

[19] JetBrains. 2018. IntelliJ Quick Fixes. https://www.jetbrains.com/resharper/
features/quick_fixes.html. (2018).

[20] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Similar Code.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2018). ACM, New York, NY, USA, 298–309.

[21] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[22] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
MintHint: Automated Synthesis of Repair Hints. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 266–276.

[23] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing Pro-
grams with Semantic Code Search (T). In Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (ASE ’15). IEEE
Computer Society, Washington, DC, USA, 295–306.

[24] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-written Patches. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 802–811.

[25] Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction
by Examples. In Proceedings of the 35th ACM SIGPLANConference on Programming
Language Design and Implementation (PLDI ’14). ACM, New York, NY, USA, 542–
553.

[26] X. B. D. Le, D. Lo, and C. L. Goues. 2016. History Driven Program Repair. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE Press, Piscataway, NJ, USA, 213–224.

[27] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 3–13.

[28] Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis
by Example. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM, New York, NY, USA,
565–574.

[29] Henry Lieberman. 2001. Your Wish is My Command: Programming by Example.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[30] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon. 2018. Mining Fix Patterns
for FindBugs Violations. IEEE Transactions on Software Engineering (2018), 1–1.
https://doi.org/10.1109/TSE.2018.2884955

[31] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
727–739.

[32] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’16). ACM, New York, NY,
USA, 298–312.

[33] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for Simple Program Repairs. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
448–458.

[34] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). ACM, New York,
NY, USA, 691–701.

[35] Microsoft. 2018. Visual Studio - Common Quick Actions. https://docs.microsoft.
com/en-us/visualstudio/ide/common-quick-actions. (2018).

[36] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. Comput.
Surveys 51, 1, Article 17 (Jan. 2018), 24 pages.

[37] Eugene W. Myers. 1986. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1 (01 Nov 1986), 251–266. https://doi.org/10.1007/BF01840446

[38] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program Repair via Semantic Analysis. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 772–781.

[39] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for
Inductive Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). ACM, New York, NY, USA, 107–126. https:
//doi.org/10.1145/2814270.2814310

[40] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning Syntactic
Program Transformations from Examples. In Proceedings of the 39th International
Conference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA,
404–415.

[41] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58–66.

[42] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:
Effective Object Oriented Program Repair. In Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2017). IEEE
Press, Piscataway, NJ, USA, 648–659.

[43] Andrew Scott, Johannes Bader, and Satish Chandra. 2019. Getafix: Learning
to fix bugs automatically. CoRR abs/1902.06111 (2019). arXiv:1902.06111 http:
//arxiv.org/abs/1902.06111

623

http://dl.acm.org/citation.cfm?id=2818754.2818809
http://dl.acm.org/citation.cfm?id=2818754.2818809
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3062341.3062351
https://errorprone.info/
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1145/1926385.1926423
http://dl.acm.org/citation.cfm?id=3327757.3327890
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
https://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickfix.htm
https://www.jetbrains.com/resharper/features/quick_fixes.html
https://www.jetbrains.com/resharper/features/quick_fixes.html
https://doi.org/10.1109/TSE.2018.2884955
https://docs.microsoft.com/en-us/visualstudio/ide/common-quick-actions
https://docs.microsoft.com/en-us/visualstudio/ide/common-quick-actions
https://doi.org/10.1007/BF01840446
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
http://arxiv.org/abs/1902.06111
http://arxiv.org/abs/1902.06111
http://arxiv.org/abs/1902.06111


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad

[44] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
Cure Worse Than the Disease? Overfitting in Automated Program Repair. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). ACM, New York, NY, USA, 532–543.

[45] Synopsys. 2018. 2017 Coverity Scan Report. https://www.synopsys.com/content/
dam/synopsys/sig-assets/reports/SCAN-Report-2017.pdf. (2018).

[46] Shin Hwei Tan and Abhik Roychoudhury. 2015. Relifix: Automated Repair
of Software Regressions. In Proceedings of the 37th International Conference on
Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
471–482.

[47] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program
Repair for Heap Properties. In Proceedings of the 40th International Conference
on Software Engineering (ICSE ’18). ACM, New York, NY, USA, 151–162. https:
//doi.org/10.1145/3180155.3180250

[48] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-output Examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 452–466. https://doi.org/10.1145/3062341.
3062365

[49] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (ICSE ’18).
ACM, New York, NY, USA, 1–11.

[50] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for Automated
Program Repair. In Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA,
660–670.

[51] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 416–426.

[52] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote, T. Durieux, D. Le
Berre, and M. Monperrus. 2017. Nopol: Automatic Repair of Conditional State-
ment Bugs in Java Programs. IEEE Transactions on Software Engineering 43, 1
(Jan 2017), 34–55.

[53] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated Migration of
Hierarchical Data to Relational Tables Using Programming-by-example. Proc.
VLDB Endow. 11, 5 (Jan. 2018), 580–593. https://doi.org/10.1145/3177732.3177735

[54] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200.

624

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/SCAN-Report-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/SCAN-Report-2017.pdf
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3177732.3177735

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Overview
	3.2 Collecting Patch Examples
	3.3 Cleaning Patches
	3.4 Domain Specific Language
	3.5 Learning Repair Strategies from Examples
	3.6 Suggesting Fixes

	4 Evaluation
	4.1 Implementation
	4.2 Dataset
	4.3 Experimental Setup
	4.4 Results
	4.5 RQ1: Synthesis Algorithm Effectiveness
	4.6 RQ2: Fixing Open Violations in the Wild
	4.7 RQ3: Comparison against State of the Art

	5 Discussion
	6 Limitations
	7 Related Work
	8 Conclusion
	References

