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ABSTRACT

One of the major drawbacks of traditional automatic program re-
pair (APR) techniques is their dependence on a test suite as a repair
specification. In practice, it is often hard to obtain specification-
quality test suites. This limits the performance and hence the viabil-
ity of such test-suite-based approaches. On the other hand, static-
analysis-based bug finding tools are increasingly being adopted in
industry but still facing challenges since the reported violations
are viewed as not easily actionable. In previous work, we pro-
posed a novel technique that solves both these challenges through
a technique for automatically generating high-quality patches
for static analysis violations by learning from previous repair ex-
amples. In this paper, we present a tool PHOENIX, implementing
this technique. We describe the architecture, user interfaces, and
salient features of PHOENIX, and specific practical use cases of
its technology. A video demonstrating PHOENIX is available at
https://phoenix-tool.github.io/demo-video.html.

CCS CONCEPTS

- Software and its engineering — Automated static analysis;
Programming by example; Software testing and debugging.
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1 INTRODUCTION

Since software debugging is one of the most time-consuming and
labor-intensive phases of the software development lifecycle, its
automation has the potential to significantly improve developer
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productivity. A number of automatic program repair (APR) [8, 15]
techniques have been proposed to address this challenge. Typical
APR techniques rely on a test suite as a repair specification, i.e., an
oracle that fails on the buggy program, to validate the correctness
of generated patches for the bug. However, in practice, the quality
of test suites is often far from satisfactory for this purpose.

Static program analysis tools are increasingly being used as an
alternative approach to find software quality issues. However, one
of the key barriers to the successful adoption of this technology is
the lack of actionable suggestions from the tools on how to fix the
quality issues that have been flagged. Recently, development envi-
ronments such as IntelliJ [12], Eclipse [11], and Visual Studio [14]
have started offering a “quick fix" suggestion feature to fix simple
programming errors automatically, based on a pre-determined set
of manually-defined fix templates. Such fix templates are carefully
designed to maximize their versatility, i.e., being applicable to many
different program contexts. This invariably results in the fix tem-
plates being rather simple and generic. In other related work, the
FooTtPATCH tool [18] proposed the automatic detection and repair
of heap properties using static analysis. However, this technique is
specifically developed for a limited class of bugs and non-trivial to
extend to more generic bug-fixing.

In [4], we proposed a learning-based automatic repair technique
for static analysis violations that is comprised of two key elements:
(1) it uses an off-the-shelf static analyzer, such as FindBugs [1],
Infer [5], or error-prone [9], as an oracle, to detect potential bugs
and also to validate a patch as a viable fix for such a bug, and (2) it
learns repair strategies from previous repair examples mined from
a large corpus of open-source projects (a resource often referred
to as Big Code [6]). This eliminates the dependence on a test suite
while leveraging the now widely used static analyzers. Our learning-
based approach is quite general in that it is not tied to a specific
class of bugs or repair strategies. At the same time, it can learn
more elaborate repair strategies very specific to each bug type and
program context, potentially increasing the accuracy and the scope
of bug fixes.

This paper addresses the implementation and deployment of the
PHOENIX tool. Specifically, the main contributions of this paper are:

e Two practical usage scenarios of PHOENIX (Section 3).

e A detailed description of the software architecture and the user
interfaces of PHOENIX (Section 4).

e Initial results from an industrial deployment of PHOENIX on a
financial transaction processing system (Section 6).
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Figure 1: Overview of PHOENIX system.

2 TECHNIQUE

The high-level overview of the PHOENIX system is shown in Figure 1.
This fully-automated pipeline consists of three main stages: (1)
collecting patches for static-analysis violations, (2) learning repair
strategies from the collected patches, and (3) suggesting repairs for
unseen violations.

For collecting patches, PHOENIX analyzes repositories from Big
Code, and runs the static analyzer on each commit of a given repos-
itory, to obtain a list of static analysis violations for that commit.
Then, it applies a violation tracking procedure to obtain the vi-
olations that were fixed as well as the corresponding patch that
fixed them. This yields a collection of patches, which are further
cleaned by filtering out edits that are irrelevant to the fix of the
violation. These cleaned patches are clustered into collections of
patch examples corresponding to each distinct violation type, for
the subsequent learning stage.

PHOENIX employs a Programming-by-Example (PbE) technique,
specifically domain-specific inductive synthesis [17], to learn
generic, high-level repair strategies in a specialized domain-specific
language (DSL). Our novel DSL is designed to be expressive enough
to capture common edit operations frequently observed in fixes of
static analysis violations and at the same time compact enough to
efficiently guide the learning procedure to a viable solution with-
out search space explosion. Conceptually, the synthesis algorithm
in PHOENIX is comprised of two steps: (1) enumerate all possible
strategies for all repair examples and (2) find the fewest number of
strategies amongst these that can solve all the repair examples.

Finally, when an unseen violation is discovered, the strategies
for that specific type of violation are selected and applied to the
buggy code to generate repair suggestions. For more details, the
interested reader is referred to our technical paper [4].

3 USAGE SCENARIOS
3.1 Integration with IDEs

The most straightforward use of PHOENIX is as a plugin installed
in an Integrated Development Environment (IDE), as shown in
Figure 2. In this use case, the developer writes code, the IDE auto-
matically compiles the code, performs static analysis, and displays
a report of violations found, if any. PHOENIX can generate sugges-
tions to repair those violations. Specifically, the developer selects
the violation to fix and is shown one or more repair suggestions.
The developer can then choose one of the suggestions, and after
confirming that it actually repairs the violation correctly, apply it
to the actual code.

The advantage of this scenario is that developers can get started
by simply installing the plugin, which provides the same Ul as the
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Figure 3: Integration with SCM/CI.

existing code suggestion features, minimizing developers’ learning
costs. On the other hand, an obvious drawback is that it is necessary
to provide plugins for multiple IDEs, such as Eclipse or Intelli] IDEA.
We have currently implemented a plugin for Eclipse IDE, one of
the widely-used IDEs, on top of the PHOENIX core engine. This is
discussed further in Section 4.

3.2 Integration with Source Code Management
and Continuous Integration System

Another scenario is to run PHOENIX when developers commit code
to a repository. In a typical Continuous Integration (CI) pipeline,
when code is committed, build and test are executed, and optionally
a static analyzer is executed. As shown in Figure 3, PHOENIX may
be used to generate repair suggestions for the violations discovered
during the CI pipeline, and the repair patches are fed back to the
developers as pull requests.

The advantage of this scenario is that, unlike the IDE scenario,
it is not necessary to support multiple IDEs, and hence a generic
command line tool that outputs repair patches from buggy source
code as input should suffice for such a CI pipeline integration. The
downside is that repairs may possibly be delayed or overlooked
because the tool cannot make suggestions as soon as violations are
discovered, as in the IDE scenario.
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Figure 4: PHOENIX system architecture.

4 TOOL DESCRIPTION

PraoENIx: We have implemented the fully-automated pipeline,
shown in Figure 1, in a tool called PHOENIX. As shown in Figure 4,
the PHOENIX core engine consists of four main components: the
violation tracker component in Python, and the patch cleaner, repair
strategy learner and suggestion generator components in Java. We
use Eclipse JDT to manipulate ASTs, GumTree [7] to compute AST
differences and employ SpotBugs! as the static program analyzer.
IDE Plugin: Eclipse provides a standard UI for suggesting code
fixes, called Quick Fix. The PHOENIX plugin we have developed uti-
lizes the Quick Fix UI to provide repair suggestions for violations.
As shown in Figure 5 (a), by right-clicking the SpotBugs indicator
of the violation, PHOENIX repair suggestions are displayed next to
other code suggestions. Clicking on it brings up the PHOENIX win-
dow where developers can browse the description of the violation
and the repair suggestions (Figure 5 (b)). The PHOENIX window also
shows the previous repair examples that were used to learn the
strategies (Figure 5 (c)). In case developers are not confident about
the suggestions, these examples serve as an illustration of how
other projects have repaired similar violations. Once the developer
confirms that the suggestion is correct, simply pressing the APPLY
button deploys the suggestion to the actual code.

Command Line UI: The command line interface (CLI) of PHOENIX
allows for its integration into automated services such as CI/CD
pipelines. Given the source code of the target project and its com-
piled JAR file, the CLI automatically executes SpotBugs, collects
all violations, generates repair suggestions for each violation, and
outputs HTML reports. The reports include the descriptions of the
violations and their repair suggestions.

5 EVALUATION

We summarize the evaluation of PHOENIX reported in [4]. The
evaluation was conducted on a dataset that consists of 5,389 unique
patches extracted from 517 popular Github projects, spanning 234
distinct types of SpotBugs violations. Table 1 shows the salient
statistics of this dataset.

Effectiveness of PHOENIX. For this evaluation we perform a
project-level, leave-one-out cross-validation experiment on our
dataset. For each patch in a violation category, we learn repair
strategies from all the patches in other projects, in the same category,
and apply them to the buggy source in the patch. We compute recall

!The results in [4] were reported using the FindBugs static analyzer. But our current
tool implementation now uses its successor SpotBugs, which is substantially similar.
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Table 1: Summary of PHOENIX dataset.

#Projects 517 | #Commits 3,549,436
#Analyzed commits 290,519 | #Fixing commits 21,028
#Collected patches(cleaned) 11,865 | #Unique patches 5,389
#Violation types 234 | Collection time 2 months

Table 2: Leave-one-project-out Cross Validation Results

#Dataset patches 5,389 | #Manually-inspected patches 465

#Successful fixes 4,596 | #Semantically-equiv. (Top-1) 161 (35%)
#Semantically-equiv. (Top-5) 203 (44%)
#Correct (Top-1) 252 (54%)
Recall 85% | #Correct (Top-5) 299 (64%)

as the percentage of cases where at least one fix is generated, i.e.,
the violation is removed, as judged using SpotBugs. The results are
shown in table Table 2. PHOENIX achieves a recall of 85% indicating
that it is able to generalize across projects.

To measure the usefulness of the generated PHOENIX fixes, we
compute precision as the percentage of cases where the generated
fix is semantically equivalent to the ground-truth i.e., the the devel-
oper’s patch. However, it is possible that the developer’s changes
inadvertently removed the violation, thus rendering the ground
truth itself inaccurate. Therefore, we separately track the cases
where the patch generated by PHOENIX is correct i.e., that it fixes
the violation in the right way for that instance.

The two precision metrics described above are difficult to com-
pute automatically. Therefore we recruited eight researchers outside
the group of authors to perform a manual evaluation on a sample
of 465 (~ 10%) mined patches (proportionately sampling each bug
category). For each buggy instance, the participants are presented
with the top-5 ranked patches generated by PHOENIX and asked
to mark the highest-ranked patch, if any, that (a) is a semantically
equivalent fix, and (b) the one that is a correct fix. Each bug instance
receives three independent reviews. We report the majority out-
come, or no patch, in case of no majority consensus. As shown in
Table 2, 54% of the top-ranked patches are judged correct. Given
that the only oracle we use is the static analyzer, the correctness
metric is more suitable to evaluate PHOENIX. Overall, the results
suggest that PHOENIX indeed learns generic, useful patterns.

Fixing Open Violations. We applied PHOENIX to repair open
SpotBugs violations on five large, popular open-source Java
projects, outside our list of mined repositories, namely Apache
Camel, Flink, Dubbo, Spring-Boot and Presto-DB. PHOENIX gener-
ated patches for 118 violations, out of a total of 141 flagged by
SpotBugs, 94 of which were manually verified as correct. After
applying some common sense filtering criteria (described in [4]),
PHOENIX-generated patches for 19 bugs were submitted to the re-
spective projects, all of which have been reviewed and merged by
the development teams. This study demonstrates the effectiveness
of PHOENIX in repairing unseen violations in the wild.

6 TOOL DEPLOYMENT

To demonstrate the effectiveness of PHOENIX in industrial setting,
it was deployed on a real-world financial transaction processing
system, comprised of approximately 200 thousand lines of Java
code. First, SpotBugs was used to detect all violations in the target
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Figure 5: PHOENIX Eclipse plugin.

system. Then, the CLI version of PHOENIX was applied and suc-
cessfully generated repair suggestions for 52.7% of the detected
violations. Among them, 95.3% of the suggestions were confirmed
as valid through manual inspection. In addition, according to the
estimates by the stakeholders, the repair time could be shortened
by up to 30% compared to traditional manual bug-fixing. Note that
the recall and precision numbers are significantly different from
those of Section 5 mainly because only repair strategies that were
shown to generate correct repairs according to our previous manual
inspection (Section 5) were activated in this deployment.

7 RELATED WORK

Static-analysis-based patching. Some tools like FindBugs and
Clang provide "quick fix" suggestions to help developers fix cer-
tain classes of bugs [3], as do IDEs like Intelli], Eclipse, and Visual
Studio. However, these recommendations are instantiated from stati-
cally defined bug-fix strategies, while PHOENIX automatically learns
these strategies from examples. FooTPATCH [18] proposed a static-
analysis-based technique for automatically generating patches for
violations of heap properties, flagged by static analysis. However,
while FooTPATCH’s patch generation is tied to a specific class of vi-
olations, PHOENIX’s approach can target arbitrary violation classes,
by learning from their examples. Liu et al. manually extract fix-
patterns from a corpus of fixed static analysis (FindBug) violations
mined from GitHub, and apply them to manually fix open Find-
Bugs violations [13]. PHOENIX proposes a novel, fully-automated
PbE-based approach for this problem setting. Getafix [2] uses anti-
unification techniques to automatically infer repair templates, sim-
ilar to [13], and a special patch-ranking technique based on past
human-fixes. We believe this ranking function can augment and
improve PHOENIX’s final patch ranking.

Automated program repair (APR). A typical APR technique
explores a space S of possible mutations to a buggy program P, for
one that allows the mutated program to pass all tests in a given
test suite T. This is done either using an explicit search [10] or
by synthesizing repairs from an oracular representation derived
through symbolic execution [16]. PHOENIX uses a fundamentally
different mechanism of constructing repairs by synthesizing a repair
strategy in a custom DSL from a few examples of the same kind
of bug. The DSL is designed around using a static analyzer as the
oracle. These key features allow it to construct fairly sophisticated,
non-localized repairs while current APR techniques can typically
only create one-line, or at most one-hunk, repairs.

A more complete discussion of related work can be found in [4].

8 CONCLUSION

In our previous work [4], we proposed a novel technique for au-
tomatically generating high-quality repairs for static analysis vio-
lations by learning from repair examples. Our approach benefits
from the recent success of static analyzers to completely avoid the
use of test suites as a specification. This paper presented our tool
PHOENIX that implements a fully-automated pipeline that mines
and cleans patches for violations from the wild, learns generalized
executable repair strategies as programs in a novel DSL, and then
instantiates concrete repairs from them on new unseen violations.
We also described the architecture, user interfaces and practical
usage scenarios of PHOENIX. The encouraging results from both
the evaluation studies and a real-world tool deployment confirm
that PHOENIX can actually improve the quality of software while
reducing debugging and maintenance efforts.
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