
Regression Aware Debugging for Mobile Applications

Rohan Bavishi Awanish Pandey Subhajit Roy
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur, India.
{rbavishi, awpandey, subhajit}@iitk.ac.in

Abstract
Regression-aware fault localization attempts to rank suspicious
statements in a manner such that potential regression inducing
suggestions are ranked low. The algorithm extracts the proof
of correctness of all the correct executions in the form of Craig
Interpolants over the successful execution traces. It, then, labels
a program location suspicious if it can find a possible value
for the assignment that can allow the hitherto failing execution
to produce the expected output. However, any such value that
does not satisfy the proof constraints of the passing tests are
penalized in terms of their ranking. In this article, we sketch
the regression-aware fault localization algorithm and motivate
its potential application in debugging mobile applications.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Debugging, fault localization

1. Introduction
This is an era of smart devices—from smart-watches to cell-
phones and tablets, mobile applications have become an
integral part of our lives. The amount of software developed
in this domain necessitates support for effective testing and
debugging.

One potent debugging technique is fault localization:
given a failing test, a fault localization algorithm suggests
potential program statements that can be ”repaired” to cor-
rect the failing execution; we refer to such statements as
suspicious statements. However, many such suggestion may
induce regression—though there exist possible alterations to
these statements that can ”repair” the failing execution, but
any such modification could lead to the failure of a hitherto

passing test-case. Regression-aware fault localization [1] at-
tempts to rank the suspicious statements such that potential
regression inducing suggestions are ranked low.

We illustrate our algorithm using the code snippet shown
in Figure 1. The program is an abstraction of a graphi-
cal user-interface (GUI) based event-driven program de-
scribed in a C-like language. The program encodes the
essence of a sprite-based game: the handle user input()
method detects the keypress events and moves the player’s
sprite by translating its bounding box. Every time the player
moves, the handler also detects if it collides with the sta-
tionary objects around it (for simplicity, we show only a
single object) using the detect collision() routine; the
boolean variable collision detected trips to true any time
a collision happens. The main() procedure installs the key-
press event handler using Handle User Input() such that
the handle user input() routine is invoked at every key-
press. The Check Desired Collision State() routine pro-
vides the correctness specification by asserting if the state of
the collision detected variable is indeed correct.

The tests for such a routine would include a sequence of
keypress events and the expected outcome is the state of the
collision detected flag. Such tests can be produced by hu-
man testers or automatically generated from tools like the
UI/Application Exerciser Monkey[3]. Table 1 shows a set of
tests (column 2), their expected outcome (column 3 labelled
‘Collision Occurs’), the actual outcome from the program
captured as the state of the variable collision detected
(column 4 labelled ‘Collision Detected’) and the test out-
come (column 5) for the given program.

The program listed in Figure 1 is faulty and the bug lies
in lines 21 and 22: it fails when the player’s bounding box
exactly overlaps with that of the object (the bounding boxes
of the player and the object have the same dimensions).
The correct expression is provided as a comment on line
19. This is precisely the reason why the fifth test fails: the
player moves right once, moves up twice, and then moves
right again; this aligns the player exactly with the object, but
the collision is still not detected (due to the bug described
above). In the four passing tests, the player is either moving
away from the object or its bounding box intersects partially
with that of the object.

1 #define OBJ_X1 20
2 #define OBJ_X2 25
3 #define OBJ_Y1 4
4 #define OBJ_Y2 9
5 // Horizontal & Vertical Distance

6 // covered by key-presses

7 #define HOR_INC 10
8 #define VER_INC 2
9

10 // 2-D Bounding Box of the Player

11 int p_x1, p_x2, p_y1, p_y2;
12 bool collision_detected;
13

14 bool x_intersect_check() {
15 return (p_x1 <= OBJ_X1 && OBJ_X1 < p_x2) ||
16 (p_x1 < OBJ_X2 && OBJ_X2 <= p_x2);

17 }
18

19 bool y_intersect_check() {
20 BUG FIX : (p_y1 <= OBJ_Y1 && OBJ_Y1 < p_y2) ||

21 (p_y1 < OBJ_Y2 && OBJ_Y2 <= p_y2);

22 ## return (p_y1 < OBJ_Y1 && OBJ_Y1 < p_y2) ||
23 (p_y1 < OBJ_Y2 && OBJ_Y2 < p_y2); ##

24 }
25

26 void detect_collision() {
27 collision_detected = (collision_detected ||

28 ## (x_intersect_check() &&

29 y_intersect_check()) ##

30);

31 }
32

33 void handle_user_input(int keypress) {
34 if (keypress == UP)
35 ## { p_y1 += VER_INC; p_y2 += VER_INC; } ##
36 else if (keypress == RIGHT)
37 { p_x1 += HOR_INC; p_x2 += HOR_INC; }
38 else if (keypress == DOWN)
39 { p_y1 -= VER_INC; p_y2 -= VER_INC; }
40 else if (keypress == LEFT)
41 { p_x1 -= HOR_INC; p_x2 -= HOR_INC; }
42

43 // Check if box of player intersects with that

44 // of the object because of previous step

45 detect_collision();

46 }
47

48 int main() {
49 // Initialization of variables

50 p_x1 = p_y1 = 0; p_x2 = p_y2 = 5;

51 collision_detected = false;
52

54 Handle_User_Inputs();

55 // Check if the given sequence of user inputs

56 // causes a collision at any step

57 Check_Desired_Collision_State();

58 }

Figure 1: Code excerpt from a sprite-based game handling 2-
dimensional collision detection among rectangular boxes

Our regression-aware fault localizer starts off by running
the tests and recording a trace for each successful execu-
tion (corresponding to the passing tests 1 to 4) as a se-
quence of dynamic statements executed. It, then, extracts
Craig Interpolants[2] from the proofs of correctness of the
trace formula of all these passing tests (tests 1 to 4). Next,

Test User Inputs Collision Collision Test
ID Occurs Detected Outcome
1 [⇐, ⇐, ⇐, ⇐, ⇐] False False Passed
2 [⇒, ⇑, ⇒, ⇒, ⇒] True True Passed
3 [⇒, ⇒, ⇑, ⇑, ⇒] True True Passed
4 [⇑, ⇑, ⇑, ⇑, ⇑] False False Passed
5 [⇒, ⇑, ⇑, ⇒, ⇒] True False Failed

Table 1: Test-suite and respective outcomes (for Figure 1)

for the failing test (test 5), it uses the CBMC bounded model-
checker [4] to search for program locations where it is pos-
sible to replace an expression by some value that can rectify
the failing test. It also checks whether this value conforms
to the constraints imposed by the interpolants obtained from
the correctness proofs of the passing tests; the more proof
terms it violates, the more likely it is that a change to this
location will cause regression.

The overall ranking of a candidate location is composed
of two metrics: the number of program locations that need
to be modified, and the number of proof terms it violates.
Based on this, the localizer outputs a ranked set of locations
with regression-inducing locations ranked lower.

The statements highlighted in gray (in Figure 1) are the
locations suggested when information from the passing tests
is not used. The statements enclosed within ## are the state-
ments that are ranked as the most suspicious locations by our
regression-aware localizer.

Our localizer is able to rank the correct bug location
among one of its three most suspicious locations, while giv-
ing a lower score to the other superfluous candidates. For
example, it ranks the program location at line 15 low as
it is able to correctly reason that the return statement for
the x intersect check() function (at line 15) should not be
modified. This location is indeed regression-inducing as a
change that could rectify the failing test may break Tests 1
and 3. Thus, regression-awareness improves the quality of
localization by reducing the number of locations that a de-
veloper would need to inspect while debugging the program.

References
[1] Rohan Bavishi, Awanish Pandey, and Subhajit Roy. To Be Pre-

cise: Regression Aware Debugging. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA 2016, 2016.

[2] William Craig. Three uses of the Herbrand-Gentzen theorem
in relating model theory and proof theory. The Journal of
Symbolic Logic, 22(03):269–285, 1957.

[3] UI/Application Exerciser Monkey.
https://developer.android.com/studio/test/monkey.html.
Accessed on 20th September, 2016.

[4] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool
for checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 168–176.
Springer, 2004.

