
To Be Precise: Regression Aware Debugging

Rohan Bavishi Awanish Pandey Subhajit Roy
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur, India
{rbavishi, awpandey, subhajit}@iitk.ac.in

Abstract
Bounded model checking based debugging solutions search for
mutations of program expressions that produce the expected
output for a currently failing test. However, the current local-
ization tools are not regression aware: they do not use informa-
tion from the passing tests in their localization formula. On the
other hand, the current repair tools attempt to guarantee regres-
sion freedom: when provided with a set of passing tests, they
guarantee that none of these tests can break due to the suggested
repair patch, thereby constructing a large repair formula.

In this paper, we propose regression awareness as a means
to improve the quality of localization and to scale repair. To en-
able regression awareness, we summarize the proof of correct-
ness of each passing test by computing Craig Interpolants over a
symbolic encoding of the passing execution, and use these sum-
maries as additional soft constraints while synthesizing altered
executions corresponding to failing tests. Intuitively, these addi-
tional constraints act as roadblocks, thereby discouraging exe-
cutions that may “damage” the proof of a passing test. We use a
partial MAXSAT solver to relax the proofs in a systematic way,
and use a ranking function that penalizes mutations that damage
the existing proofs.

We have implemented our algorithms into a tool, TINTIN,
that enables regression aware localization and repair. For local-
izations, our strategy is effective in extracting a superior ranking
of suspicious locations: on a set of 52 different versions across
12 different programs spanning three benchmark suites, TINTIN

achieves a saving of developer effort by almost 45% (in terms
of the locations that must be examined by a developer to reach
the ground-truth repair) in the worst case and 27% in the aver-
age case over existing techniques. For automated repairs, on our
set of benchmarks, TINTIN achieves a 2.3× speedup over exist-
ing techniques without sacrificing much on the ranking of the
repair patches: the ground-truth repair appears as the topmost
suggestion in more than 70% of our benchmarks.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Debugging, fault localization, automated repair,
interpolation

1. Introduction
Automatic fault localization techniques have become imper-
ative in this modern era of huge software code-bases. Given
a large code-base, fault localization techniques help the pro-
grammer narrow-down to a fault by providing suggestions
about buggy locations and possible repairs. The research
community has provided multiple bug localization and re-
pair techniques that use symbolic [10, 23, 36, 40], statistical
[26, 27, 38], fault injection [49], and genetic algorithm based
techniques [24, 41, 47, 48].

Symbolic techniques search for expressions whose evalu-
ations can be replaced by some “angelic” values [10] to cor-
rect a given faulty execution; such expressions are flagged as
potentially buggy expressions. This search for angelic val-
ues can be attempted either using a bounded model checker
(BMC) [23, 36] or via a symbolic execution engine [10, 40].
As a symbolic execution engine models only a few paths
in its symbolic execution tree (construction of the com-
plete tree being prohibitively expensive), symbolic execution
based tools are necessitated to focus their localization/re-
pair suggestions to a set of pre-selected highly suspicious
statements; such suspicious statements are usually identified
by statistical bug isolation techniques. On the other hand,
BMC-based tools use a compact trace formula (TF) to model
the complete program, and hence, are capable of searching
program-wide for a viable fix; however, most of the BMC-
based tools also employ statistical localization techniques to
restrict the search to smaller regions of the program.

Recently, there have been some interesting proposals [23,
36] that are based on the hypothesis that a buggy program
can often be corrected with a “small” change. Such bug
localization tools (like BugAssist[23]) rank their sugges-
tions by the number of locations they would need to alter;
automated repair tools (like DirectFix [36]) search for the

“smallest” (simplest) possible alteration that would correct
the buggy execution. Such tools often differ in their ability
to handle regression failures—to the extremes; for example,
BugAssist [23] completely disregards the possibility of re-
gression failures; any location that on altering can correct
the failing execution is provided as a valid suggestion. On
the other hand, DirectFix[36] attempts to provide provably
correct guarantees that the repairs cannot cause regression
failures; they do so by fusing regression and repair, thereby
also including constraints that model the entire execution
space of passing tests.1 This causes a substantial blow-up
in its repair formula—almost to a point where the technique
remains practical only for tiny regions of the program. Also,
tools like DirectFix[36] have to be necessarily used in the
repair mode, and do not allow for a “cheaper” localization
mode. Hence, overall, balancing scalability while providing
regression-awareness has been the bane of the otherwise en-
couraging direction of BMC-based debugging efforts.

In this paper, we propose a new algorithm that attempts to
prevent both the extremes by constraining the system so that
regression failure is mostly, though not always, prevented.
Instead of embedding the complete model of the test-suite,
we extract summaries of the correctness proofs from the
passing tests, and use them as soft roadblocks while generat-
ing localization and repair suggestions to achieve regression
awareness instead of regression freedom. Any suggestion
that can correct a faulty execution while “breaking” only a
small number of proofs is ranked higher. Note that breaking
a proof constraint does not necessarily imply regression fail-
ure; it simply implies that the earlier proof does not stand—
it is often possible (as is in many cases in our experiments)
that a new proof can be constructed for the (possibly altered)
execution of the passing test whose proof had to be relaxed
to allow a certain mutation (we discuss it in detail in sec-
tion 4.6).

We extract the summaries of the correctness proofs by
computing the Craig Interpolants [14] over a symbolic en-
coding of the passing executions. As such proofs are small,
the blowup in the size of the overall model is not large. On
our set of benchmarks, regression awareness increases the
size of the localization formula by only about 1.42× (on an
average).

We demonstrate the effectiveness of our algorithm by
building our ideas into our debugging tool, TINTIN, and
compare it with our reimplementations of a couple of popu-
lar tools [23, 36].

To the best of our knowledge, TINTIN is the first attempt
at incorporating regression-awareness to BMC-based bug
localization without requiring to transform the localization
problem to a repair problem. Localization solutions are of-

1 In this paper we constrain the scope of regression tests to only within a re-
duced representative test-suite (often selected using code-coverage metrics)
that is employed for the localization/repair activity and not the complete
“universal” test-suite.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0 10 20 30 40 50

#
C

la
u
s
e
s

#Passing Testcases

ReDirectFix
TINTIN

Figure 1: Size of the repair formula (in number of clauses) for
TINTIN grows slower than ReDirectFix (our reimplementation of
DirectFix [36]) with increasing size of the test-suite

ten preferred over repair tools as they are more scalable and
are applicable more widely as they are not restricted by a re-
pair grammar (set of permissible mutations). We achieve su-
perior rankings than ReBugAssist (our reimplementation of
BugAssist [23]): in terms of developer effort, our algorithm
requires the developer to examine 45% lesser locations than
ReBugAssist in the worst case and by 27% on average, to
reach the ground-truth repair on our set of benchmarks.

Our algorithm also allows for a repair “mode” that uses
our regression-aware ranking function to assign a low rank
to suggestion that have a high plausibility of inducing re-
gression failures. Our solution uses a smaller repair formula
than existing techniques (like DirectFix[36]) without sacri-
ficing much on the quality of the solution. Figure 1 shows
how our algorithm scales with respect to our reimplementa-
tion of DirectFix (that we refer to as ReDirectFix) in terms
of the size of the repair formula. In terms of time, TINTIN
achieves a speedup of 2.3× over ReDirectFix (on an aver-
age) our benchmarks, while ranking the ground-truth repair
patch as the topmost suggestion for more than 70% of our
benchmarks.
Our contributions in this paper are as follows:

• We propose a new algorithm that embeds the correct-
ness proofs from the passing tests to provide regression
awareness for localization and repair.
• For localization, to the best of our knowledge, it is the

first effort at embedding regression awareness for sym-
bolic model checking-based fault localization. Our im-
plementation substantially beats a regression-oblivious
localization tool [23] on the quality of the rankings.
• For automated repair, we propose regression awareness

in lieu of regression freedom. Our algorithm produces
a much smaller repair formula than existing techniques
while mostly retaining the ground-truth repair as the top-
most suggestion.

2. Preliminaries
2.1 Craig Interpolation
Definition 1 Given formulas A and B such that A ∧ B is
unsatisfiable, a formula I is an Interpolant [14] for A and B,
if the following conditions hold:

1. A⇒ I is valid;

2. I ∧B is unsatisfiable;

3. Free variables occurring in I occur free in both A and B.

Due these properties, interpolants often given concise expla-
nations for the unsatisfiability of a formula.

2.2 Partial Maximum Satisfiability (pMax-SAT)
Given a boolean formula in conjunctive normal form (CNF),
the Maximum satisfiability (Max-SAT) problem deals with
the question of the maximum number of clauses that can be
satisfied by any assignment to the variables [16, 25, 30].

The partial maximum satisfiability problem additionally
allows for marking the input clauses as either hard or soft;
it returns the maximum number of soft clauses that can be
satisfied by an assignment with the additional constraint that
all hard clauses must be satisfied.

2.3 Regression Bugs
Given a program with a faulty execution, a developer strives
to eliminate the error. However, in the process, new errors
may get inadvertently introduced, thereby failing tests that
were earlier successful; we refer to such bugs as regression
bugs. An automated debugging tool is typically provided
with a reduced “representative” test-suite (often selected us-
ing code-coverage metrics) rather than the complete “uni-
versal” test-suite. In this paper we constrain the scope of the
term “regression” to only within this reduced test-suite and
not the complete “universal” test-suite. As the universal test-
suite is not exposed, a suggested repair from our tool (as for
any other repair tool) may introduce regression bugs in the
universal test-suite.

3. Overview
Consider the code excerpt from the TCAS program [1] in
Figure 5. TCAS implements an air traffic collision avoid-
ance system; the authors have created 41 different versions
(referred to as v1 – v41) with seeded faults. Our example is
inspired from v6; we have eliminated all functions that were
not relevant to this bug to improve clarity.

The bug lies in line 32: the operator “<=” must be re-
placed by “<” to repair the fault. The main() function sets up
the test-bench by reading in the inputs (via the TakeInput()
method) and asserts the corresponding expected output (via
the AssertOutput() method). The procedure main() calls
the Non Crossing Biased Climb() procedure whose result
becomes the program output. Table 2(a) shows the inputs
to the program, the actual and desired outputs for each test

in our sample test-suite: T1, T2 and T3 are the tests that pro-
duce the correct output (passing tests) while TF produces an
incorrect result (failing tests). In Table 2(b), a tick (cross) in-
dicates that a program line is suggested (not suggested) by
the respective schemes.

Primarily, we attempt to learn a proof of correctness for
each passing test-case. This proof answers the following
question: why did the test produce the correct result? Given
a passing test Ti, we learn such a proof by computing the
interpolants on an unsatisfiable formula constructed on the
symbolic encoding of the execution of the passing test, along
with the program input and the negation of the obtained out-
put. Table 1 shows some of the sample interpolants (mod-
ified for readability) obtained at the program-points after
lines 5, 32 and 45 for the tests T1, T3 and T2 respectively.
We now show how we apply these interpolants for localiza-
tion and repair.

3.1 TINTIN in Bug Localization
When we run TINTIN for localization, we construct a sym-
bolic formula for the whole program (trace formula) that
summarizes all possible executions through the program. On
adding assertions for the program input and expected output
for the buggy execution, the formula clearly becomes unsat-
isfiable as no execution can be found with the given input
that can lead to the expected output (the precise reason why
the test is buggy!). Now, TINTIN attempts to relax program
expressions (i.e. replace the expressions with fresh variables
that are free to take any value) in an attempt to construct a
“corrected execution” for the failing test. The expressions,
that on relaxing, can yield a successful execution are po-
tential buggy locations (or suspicious locations). This relax-
ation is done systematically via a MAXSAT solver so that
a corrected execution can be synthesized with the minimal
change to the program.

However, the above procedure is not regression aware:
although a change to the expression at a suspicious location
may correct the faulty execution, it may break one (or more)
of the passing tests. To prevent the same, TINTIN uses the
proofs from the passing test as additional (soft) constraints to
act as “roadblocks”: any potential corrected execution that
attempts to break a proof is discouraged!

Please note that breaking a proof term does not imply that
the respective test would necessarily fail: it only implies that
now the passing test may fail (we discuss this in detail in
section 4.6).

TINTIN computes a suspiciousness score for each sug-
gestion depending on the number of entities (program ex-
pressions or proof terms) that it had to relax: all suggestions
that have the same suspiciousness score lie in the same sus-
picious class. The order in which the solver enumerates the
suggestions within a class is completely dependent on its
search heuristics and random seed.

Figure 5 shows all the locations that would be ranked in
the highest suspicious class in gray background if our tool

was not regression aware. Our regression aware TINTIN,
however, ranks only the lines enclosed within ## in its high-
est suspicious class. Table 2(b) summarizes how our results
improve by employing regression awareness: out of 11 sug-
gestions provided, more than 50% of the “incorrect” can-
didates (i.e. 6 suggestions) are eliminated. Now, let us see
how TINTIN is able to use regression awareness to eliminate
some of the “incorrect” candidates from its highest suspi-
cious class.
The failing test TF follows the following path:

• Line 54: the function alt sep() called;
• Line 42: the function Non Crossing Biased Climb() is

called (as need downward needs to be computed).
• Line 12 the function Inhibit Biased Climb() is called,

which returns 545; the value of Down Sep is 350. Hence
upward preferred evaluates to true.
• Line 16 : the variable result is evaluated, yielding a

value 1; Own Below Threat() returns true and ALIM()
returns 500 as Alt Layer Value (which is 1) is greater
than Down Sep.
• Line 42 : Since Own Below Threat() returns 1,
need downward also evaluates to 1.
• Line 45 : Finally, 1 is returned as the output.

TINTIN reasons about the program in the following way:

• Line 45: The output of the program depends on the value
returned by alt sep(), that, in turn, depends on lines
45 and 47. Since the failing test has a desired output
of 0, changing line 45 is a trivial but valid fix. If TINTIN
was not regression aware, it would have simply ranked
this fix in its highest suspicious class. However, note
that any mutation to this location would break the test
T2 as it requires a return value of 1 to succeed. This is
where the proof of T2 becomes useful: Interpolant 3 (see
Table 1) extracted from the proof of T2 precisely captures
this, thus penalizing this candidate location by ranking it
lower. Hence, the regression aware TINTIN does not rank
this fix in its highest class.
• Line 5: This line relates to the branch condition at

line 14: changing it can fix the faulty test by inverting
the branch direction. However, this fix is not reported in
the highest suspicious class as Interpolant 1 (in Table 1)
extracted from the proof of T3 discourages the change at
line 5 as a change at this location can break the proof for
test T3.

All other lines that are eliminated from the highest suspi-
cious class due to regression-awareness (lines 12, 14, 2 & 1)
also relate to the branch condition at line 14, and are blocked
by some interpolants in a similar fashion.

Table 1: Sample Interpolants obtained for Figure 5

ITP Ti Interpolant
1 1 (Climb Inhibit =⇒ return Up Sep + 100;)
2 3 (Own Tracked Alt >Other Tracked Alt) =⇒ return 0;
3 2 (need downward) =⇒ return 1;

Table 2: The test-bench and the localization summary for Figure 5.
For Table (b), only the suggestions with the highest rank are re-
ported. B+ is the regression aware version while B- is the regression
oblivious version of TINTIN

(a) Test-Bench for Figure 5

Variable T1 T2 T3 TF

Cur Ver Sep 867 907 765 634
Climb Inhibit 1 0 1 1
Up Sep 594 961 401 445
Down Sep 693 399 500 350
Own Tracked Alt 1774 560 500 433
Other Tracked Alt 2204 601 424 433
Alt Layer Value 0 3 4 1
Desired Output 0 1 0 0
Actual Output 0 1 0 1

(b) Results Summary
for Localization

Ln B+ B-
1 7 3

2 7 3

5 7 3

12 7 3

14 7 3

45 7 3

16 3 3

27 3 3

32 3 3

42 3 3

44 3 3

Table 3: Repair Results, with (PT) & without (No PT) passing
tests, for Figure 5. Only the suggestions with the highest rank are
reported

Ln Repair PT No PT
32 Own Tracked Alt <Other Tracked Alt 3 3

32 Own Tracked Alt != Other Tracked Alt 7 3

32 Own Tracked Alt >Other Tracked Alt 7 3

27 return result xor 1 7 3

16 Change || to && 7 3

16 Change >= to <= 7 3

3.2 TINTIN in Automated Repair
When employed for automated repair, TINTIN again uses the
proofs of correctness from the passing tests, such that, these
existing proof terms are “preserved” by the altered statement
for each passing test. As was in localization, the assertion on
the proof terms is soft; however, any repair suggestion that
breaks a proof term pays a penalty in terms of the ranking of
the suggestion.

Table 3 shows the repair suggestions obtained in the high-
est suspiciousness class if TINTIN was not regression aware
(Figure 5 marks all these locations with an “(R)” against
them); TINTIN, however, is able to rank the correct repair
(highlighted with a gray background in table 3) in its high-
est suspicious class.

Let us now look at TINTIN ’s operation in more detail.

• Line 32 : A total of three repairs are suggested at line 32
and all of them are valid for the given failing test case.

1 int Pos_Alt_Thresh[4] = {400, 500, 640, 740};
2 int ALIM() { return Pos_Alt_Thresh[Alt_Layer_Value]; }
3

4 int Inhibit_Climb () {
5 return (Climb_Inhibit ? Up_Sep + 100 : Up_Sep);
7 ----------(Interpolant 1)---------

8 }
9

11 int Non_Crossing_Biased_Climb() {
12 upward_preferred = Inhibit_Biased_Climb() > Down_Sep;

13

14 if (upward_preferred != 0) {
15

16 (R) ## result = !(Own_Below_Threat()) ||

17 ((Own_Below_Threat()) &&

18 !(Down_Sep >= ALIM()); ##

19

20 }
21 else {
22 result = Own_Above_Threat() &&

23 (Cur_Ver_Sep >= 600) &&

24 (Up_Sep >= ALIM()));

25 }
27 (R) ## return result; ##
28 }
29

30 int Own_Below_Threat() {
31 // Bug Fix : Own_Tracked_Alt < Other_Tracked_Alt

32 (R) ## return (Own_Tracked_Alt <= Other_Tracked_Alt); ##
34 ----------(Interpolant 2)---------

35 }
36

37 int Own_Above_Threat()
38 return (Other_Tracked_Alt < Own_Tracked_Alt);
40

41 int alt_sep() {
42 ## int need_downward = Non_Crossing_Biased_Climb() &&
43 Own_Below_Threat(); ##

44 ## if (need_downward) ##
45 return 1;

----------(Interpolant 3)---------

46 else
47 return 0;
48 }
49

50 int main() {
51 TakeInput(Cur_Ver_Sep, Climb Inhibit, Up_Sep,

52 Down_Sep, Own_Tracked_Alt,

53 Other_Tracked_Alt, Alt_Layer_Value);

54 output = alt_sep();

55 AssertOutput(output);

56 }

Figure 2: Code excerpt from TCAS. The program points at which
the interpolants 1, 2 and 3 are computed are marked and the respec-
tive interpolants are shown in Table 1

1 int Pos_Alt_Thresh[4] = {400, 500, 640, 740};
2 int ALIM() { return Pos_Alt_Thresh[Alt_Layer_Value]; }
3

4 int Inhibit_Climb () {
5 return (Climb_Inhibit ? Up_Sep + 100 : Up_Sep);
7

8 }
9

11 int Non_Crossing_Biased_Climb() {
12 upward_preferred = Inhibit_Biased_Climb() > Down_Sep;

13

14 if (upward_preferred != 0) {
15

16 result = !(Own_Below_Threat()) ||

17 ((Own_Below_Threat()) &&

18 !(Down_Sep >= ALIM()));

19

20 }
21 else {
22 result = Own_Above_Threat() &&

23 (Cur_Ver_Sep >= 600) &&

24 (Up_Sep >= ALIM()));

25 }
27 return result;
28 }
29

30 int Own_Below_Threat() {
31 // Bug Fix : Own_Tracked_Alt < Other_Tracked_Alt

32 return (Own_Tracked_Alt <= Other_Tracked_Alt);
35 }
36

37 int Own_Above_Threat()
38 return (Other_Tracked_Alt < Own_Tracked_Alt);
40

41 int alt_sep() {
42 int need_downward = Non_Crossing_Biased_Climb() &&
43 Own_Below_Threat();

44 if (need_downward)
45 return 1;
46 else
47 return 0;
48 }
49

50 int main() {
51 TakeInput(Cur_Ver_Sep, Climb Inhibit, Up_Sep,

52 Down_Sep, Own_Tracked_Alt,

53 Other_Tracked_Alt, Alt_Layer_Value);

54 output = alt_sep();

55 AssertOutput(output);

56 }

Figure 3: Code excerpt from TCAS. The program points at which
the interpolants 1, 2 and 3 are computed are marked and the respec-
tive interpolants are shown in Table 1

1 int Pos_Alt_Thresh[4] = {400, 500, 640, 740};
2 int ALIM() { return Pos_Alt_Thresh[Alt_Layer_Value]; }
3

4 int Inhibit_Climb () {
5 return (Climb_Inhibit ? Up_Sep + 100 : Up_Sep);
8 }
9

11 int Non_Crossing_Biased_Climb() {
12 upward_preferred = Inhibit_Biased_Climb() > Down_Sep;

13

14 if (upward_preferred != 0) {
15

16 result = !(Own_Below_Threat()) ||

17 ((Own_Below_Threat()) &&

18 !(Down_Sep >= ALIM());

19

20 }
21 else {
22 result = Own_Above_Threat() &&

23 (Cur_Ver_Sep >= 600) &&

24 (Up_Sep >= ALIM()));

25 }
27 return result;
28 }
29

30 int Own_Below_Threat() {
31 // Bug Fix : Own_Tracked_Alt < Other_Tracked_Alt

32 return (Own_Tracked_Alt <= Other_Tracked_Alt);
35 }
36

37 int Own_Above_Threat()
38 return (Other_Tracked_Alt < Own_Tracked_Alt);
40

41 int alt_sep() {
42 int need_downward = Non_Crossing_Biased_Climb() &&
43 Own_Below_Threat();

44 if (need_downward)
45 return 1;
46 else
47 return 0;
48 }
49

50 int main() {
51 TakeInput(Cur_Ver_Sep, Climb Inhibit, Up_Sep,

52 Down_Sep, Own_Tracked_Alt,

53 Other_Tracked_Alt, Alt_Layer_Value);

54 output = alt_sep();

55 AssertOutput(output);

56 }

Figure 4: Code excerpt from TCAS. The program points at which
the interpolants 1, 2 and 3 are computed are marked and the respec-
tive interpolants are shown in Table 1

1 int Pos_Alt_Thresh[4] = {400, 500, 640, 740};
2 int ALIM() { return Pos_Alt_Thresh[Alt_Layer_Value]; }
3

4 int Inhibit_Climb () {
5 return (Climb_Inhibit ? Up_Sep + 100 : Up_Sep);
7

8 }
9

11 int Non_Crossing_Biased_Climb() {
12 upward_preferred = Inhibit_Biased_Climb() > Down_Sep;

13

14 if (upward_preferred != 0) {
15

16 ## result = !(Own_Below_Threat()) ||

17 ((Own_Below_Threat()) &&

18 !(Down_Sep >= ALIM()); ##

19

20 }
21 else {
22 result = Own_Above_Threat() &&

23 (Cur_Ver_Sep >= 600) &&

24 (Up_Sep >= ALIM()));

25 }
27 ## return result; ##
28 }
29

30 int Own_Below_Threat() {
31 // Bug Fix : Own_Tracked_Alt < Other_Tracked_Alt

32 ## return (Own_Tracked_Alt <= Other_Tracked_Alt); ##
34 ----------(Interpolant)---------

35 }
36

37 int Own_Above_Threat()
38 return (Other_Tracked_Alt < Own_Tracked_Alt);
40

41 int alt_sep() {
42 ## int need_downward = Non_Crossing_Biased_Climb() &&
43 Own_Below_Threat(); ##

44 ## if (need_downward) ##
45 return 1;
46 else
47 return 0;
48 }
49

50 int main() {
51 TakeInput(Cur_Ver_Sep, Climb Inhibit, Up_Sep,

52 Down_Sep, Own_Tracked_Alt,

53 Other_Tracked_Alt, Alt_Layer_Value);

54 output = alt_sep();

55 AssertOutput(output);

56 }

Figure 5: Code excerpt from TCAS. The program points at which
the interpolants 1, 2 and 3 are computed are marked and the respec-
tive interpolants are shown in Table 1

But two of them, namely the ones involving the operators
!= and > cause regression for the passing test T3. This
is precisely captured in Interpolant 2 (see Table 1): any
repair must return 0 if Own Tracked Alt is greater than
Other Tracked Alt. As TINTIN would need to break this
additional constraint (the proof term) to allow this fix, it
ranks this repair low.
• Line 16 : One of the repairs changes the || operator to
&&. This would always make the variable result evaluate
to 0. This clearly breaks the passing test T2, where the
required value is 1. Hence it causes regression errors
and is correctly ranked lower due to a corresponding
interpolant from the correctness proof of T2 (not shown)
being violated.

3.3 Discussion
In the above example, we have only shown the locations/re-
pairs that appear in the highest suspicious class. In general,
TINTIN produces all localizations and repairs along with its
ranking that suggests the plausibility that a change/repair in
that location would cause regression errors in the given set
of passing tests.

As seen above, in localization and repair, regression
awareness helps reduce the false positives by a substan-
tial margin. In the above example, localization improves
by more than 50% while the correct repair appears at the
highest rank among a total of six possible suggestions.

For repairs, while there have been proposals at providing
regression freedom by conjoining the model of all passing
tests, thereby providing a provable guarantee that the tests
cannot be violated, such schemes are non-scalable. We ad-
vocate regression awareness in lieu of regression freedom;
Figure 1 compares the size of the repair formula for our
regression-aware TINTIN with the reimplementation (indi-
cated as ReDirectFix) of an existing tool DirectFix [36] that
guarantees regression freedom.

As debugging is a hard activity, TINTIN encourages the
use of the developer’s experience in debugging rather than
decoupling the tool from human expertise. In this direction,
we propose a methodology (section 5.3) on how TINTIN can
be used by a developer in her debugging effort.

4. Algorithm
4.1 Preliminaries
We describe a program as a transition system (L,Γ, l0,V)
over a set of program locations L with the computations
described over a set of variables V . The location l0 ∈ L is the
entry point. The computations in the program are described
by a set of transitions Γ, where each transition γ ∈ Γ is
described by a tuple (li, ρ, lj), where ρ is a computation
constraint over variables V∪V ′ that models the computation
between the program points li and lj ; V are the current state
variables while V ′ are the next-state variables capturing the
program state at the next program point, i.e. at location lj .

1 int a = 0; || (a#1 == 0)
2 int c = InputVar(); ||

3 if (c == 1) || (guard#1 == (c#1 == 1))
4 a = a + 1; || (a#2 == a#1 + 1)
5 else ||

6 a = a - 1; || (a#3 == a#1 + 1)
7 || (a#4 == (guard#1 ? a#2 : a#3))
8 assert (a != 1) || (a#4 != 1)

Figure 6: Example of Trace Formula Generation

We assume that all loops and recursive function calls are
unrolled a bounded number of times and all function calls
are inlined.

4.2 Trace Formula Generation
Given a program P , we proceed by computing a trace for-
mula for the program that captures all possible executions
in the given program. Construction of the trace formula in-
volves encoding each assignment as an equality constraint,
with fresh symbols for each defined variable. The condi-
tional expressions dictating the direction of branch state-
ments are computed into special guard variables and used to
select the respective definitions preserving the program se-
mantics. Figure 6 shows how a C-program is translated into
a trace formula (each statement is translated into the boolean
expression displayed on the right); the final trace formula is
the conjunction of these expressions. See Clarke et al. [12]
for further details.

4.3 Proof Constraints from Passing Tests
For each passing test, we compute its proof of correctness;
this proof essentially answers the question: why was this exe-
cution successful? This proof is efficiently summarized by a
set of interpolants over the symbolic path formula (SPF) for
each passing test. With abuse of terminology, we refer to the
sequence of interpolants as the proof (instead of summaries
of the proof) in the rest of the paper.

The SPF is a conjunction of all conditions along the
passing test and captures the execution of the passing test.
Given the passing execution as a sequence of transitions
[(l0, ρ0, l1), (l1, ρ1, l2), . . . , (ln−1, ρn−1, ln)], we compute
the proof of correctness of the test as an indexed set of inter-
polants I0, I1, . . . , In that are computed as follows:

Ii = COMPUTEINTERPOLANT(Ai,Bi), where (1a)

Ai =
∧

k∈[0,...,i]

ρk, (1b)

Bi =
∧

k∈[i,...,n−1]

ρk ∧ Ωin ∧ ((
∧
p

gp) =⇒ ¬Ωout) (1c)

Here, Ωin and Ωout refer to the binding of the input and
output variables to their respective values of input and ex-
pected output from the test-cases. The conjunct

∧
ρk corre-

sponds to the program statements and
∧
p gp corresponds to

the path taken by the test-case (in the form of true/false ex-
pressions corresponding to each branch instruction), where
gp is a guard variable. The interpolants summarize the proof
that answers to why the given input satisfies the respective
output or, in other words, why the passing test indeed pro-
duces the valid result?
We provide a deeper intuition about the above encoding in
Section 4.6, but, for the moment, we leave the reader with
the following observations (for all passing tests):

• The conjunct
∧
p gp is true as it is the exact path taken by

the passing test;
• The formula Ai ∧ Bi is UNSAT as Ωin does produce the

expected output Ωout (as it is a passing test).

Intuitively, the interpolant Ii essentially captures the
property satisfied by the program location li that allows the
passing test to produce the desired output. We define the
conjunction of the interpolants as a proof constraint for the
test t in the test-suite:

Φt =
∧

i∈0,...,st(t)

Iti (2)

where Iti refers to the interpolant at the ith location for
the tth passing test in the test-suite. The function st(t) pro-
vides the number of transition steps for the tth passing test
in the test-suite.

Any change to the program that does not satisfy a proof
constraint of a passing test t may cause the test t to fail.
Please note that this is not an if-and-only-if clause: if a
proof constraint is broken, it does not imply that the test
now definitely fails; it only implies that the test can fail. We
discuss this in detail in section 4.6

4.4 Regression-Aware Localization
Given a failing test, we are interested in finding a repair
location that, if altered, can fix the faulty test. At the same
time, a suggested repair location is prudent, if altering the
location would not cause any regressions on the rest of
the test suite. In this section, we describe how we use our
proof constraints to construct a regression-aware model to
identify such prudent locations. At the same time, as our
proof constraints are small, regression awareness causes
only a small increase in the size of the encoding.

We proceed as follows: if a test f fails, the trace formula
T F ∧ Ωfin ∧ Ωfout is unsatisfiable (where Ωfin and Ωfout are
the inputs and expected outputs of the failing test). We use
a partial MAXSAT solver to get a model (that is equivalent
to constructing a corrected execution for the failing test) by
allowing it to relax some of the computation constraints ρi.

Note that relaxing a computation is equivalent to searching
for an angelic value [10] for the computed expression. A
statement ρi that, when relaxed, produces a valid execution,
is marked as a suspicious statement.

The above formula is not regression-aware: it will simply
relax any statement that allows the failing test to succeed.
To enable regression awareness, we must rank a suspicious
statement low if it is highly plausible that it induces regres-
sion.

We add regression awareness to the above localization
formulation by ranking suspicious locations that preserve
the proofs of the passing tests higher on our list. However, if
no solution can be found, we subsequently allow the proofs
to be broken by relaxing their respective clauses gradually,
while ranking them lower. Overall, all suspect locations that
cause the minimum change to the program (i.e. propose to
alter the fewest program statements) and break the minimum
terms from the proof constraints of the passing tests are
ranked highest.

We now propose an extended encoding that engineers this
idea into the formula. We introduce fresh variables λe for
each expression e ∈ E (where E is the set of all program ex-
pressions) and fresh variables δti for each interpolant (proof
term) Iti at the ith location for the tth passing test. The same
expression would have multiple instances due to loop un-
rolling: understandably, all such instances share the same in-
stance of λe. These variables act as “switches” to control the
relaxation of the computation constraint for e.

The variables λe are introduced in the respective clauses
that they are supposed to control; for example, if λe was
supposed to control an expression e, the expression e would
be replaced by ([|e|]∨¬λe) in the T F , where [|e|] represents
the symbolic encoding of e. Therefore, the expression e is
enforced only when the value of λe is true. Similarly, the
variables δti controls the interpolant constraints (proof terms)
in the same way.

Note the role of the λe and the δ variables: the δ variables
attempt to prefer localizations that construct a corrected ex-
ecution for the failing test that breaks a minimum number
of proof terms from passing tests; λe attempts to construct a
corrected execution that would cause the smallest change to
the program (change the minimum number of expressions).
Unlike prior tools [23, 36] that only attempt to minimize the
change to the program (thereby optimize on only λe), our
ranking function is two dimensional.

Also, controlling the usage of the δ variables allows us to
have multiple configurations for our algorithm:

• Using a single instance of δt per passing test t allows us
to prioritize localizations that break minimum proofs;

• Using a single instance of δi per location i allows us to
prioritize localizations that cause minimum damage to
the proof term at location i;

• Using different δti gives equal weight to both proofs and
expressions.

The final regression-aware localization formula is:

ζH︷ ︸︸ ︷
(Ωfin) ∧

∧
t

Φ̂t ∧ ˆT F ∧ (Ωfout)) ∧ (3a)∧
e∈E

λe ∧
∧
t∈TS

∧
i∈steps(t)

δti︸ ︷︷ ︸
ζS

(3b)

where

Φ̂t =
∧

i∈[0,...,st(t)]

(Iti ∨ ¬δti) (4a)

ˆT F = ∀e∈T F TF [(e ∨ ¬λe)/e] (4b)

In the above formula, Ωfin and Ωfout refer to the mapping
of the input and output variables to their (expected) values
from the failing test.

∧
t Φ̂t shows the proof constraints,

extended with δ variables for each passing test in the test-
suite while T F denotes the trace formula for the program,
extended with λ variables.

4.5 Detailed Algorithm
We are now in shape to discuss the complete algorithm: the
main procedure kicks off by computing the proof constraints
for the passing tests. For the programP , for each passing test
t ∈ T SP , we extract its execution as a sequence of transi-
tions (line 3). We, then, pass this execution to the INTER-
POLANTS() method to compute a list of interpolants using
equation (1) (line 4). The (extended) proof constraint Φt is
computed (line 5) as the conjunction of all the interpolants
(using the ‘switch’ variable δti to enable/disable this term).

Next, we compute the extended trace formula by replac-
ing each expression e with a switchable expression e ∨ ¬λe
(lines 10-13).

The core localization procedure commences with con-
structing the hard (ζH) and soft (ζS) constraints as per equa-
tions (4) (lines 19-20). The partial MAXSAT query produces
a set of relaxed clauses B (line 22). If any variable δti (the
switch variable for test t) is contained in the set, it implies
that the proof term i has been violated by the corrected ex-
ecution of the failing test, implying that the passing test t
may have broken. For all expressions e that were relaxed
(indicated by the λe variables belonging to B), we report it
as a suspicious statement with a rank defined by a scoring
function that assigns a score depending on the number of λe
and δ variables in the set B (lines 23-32).

We, finally, make the disjunction of the selector variables
λe in B as hard constraints (lines 33-35) and repeat the
process.

Algorithm 1 Localization Algorithm
1: procedure PROOFCONSTRAINTS(P, TSP)
2: for all t ∈ TSP do
3: [(l0, ρ0, l1), . . . , (ln, ρn, ln+1)]← P(t)
4: [It0, . . . , Itn]← INTERPOLANTS(P, t, ρ0, ρ1, . . . , ρn)

5: Φ̂t ←
∧
i∈[0,...,n](I

t
i ∨ ¬δti)

6: end for
7: end procedure
8:
9: procedure TRACEFORMULA(P)

10: ˆT F ← CONSTRUCTTF(P)

11: for all e ∈ ˆT F do
12: ˆT F ← ˆT F [(e ∨ ¬λe)/e]
13: end for
14: end procedure
15:
16: procedure MAIN(P, TSP , F)
17: [Φ̂0, Φ̂1, . . .]← PROOFCONSTRAINTS(P, TSP)
18: T F ← TRACEFORMULA(P)

19: ζH ← Input[F] ∧Output[F] ∧
∧
t∈TSP

Φ̂t ∧ T F
20: ζS ←

∧
e∈E λe ∧

∧
t

∧
i δ
t
i

21: while TRUE do
22: B = PMAXSAT(ζH , ζS)
23: if B = ∅ then
24: exit
25: else
26: for all δt ∈ B do
27: print ”Passing test t may have broken”
28: end for
29: for all λe ∈ B do
30: bugRank ← score(B)
31: print ”[bugRank] Expr e is suspicious”
32: end for
33: b←

∨
{s | s ∈ B ∧ s is a λe selector variable}

34: ζH ← ζH ∪ b
35: ζS ← ζS \ b
36: end if
37: end while
38: end procedure

4.6 Discussion
Let us now dissect our localization formula to understand
why it is constructed likewise. We derive an interpolant (to
act as a proof term) at a program point li to provide an
overapproximation of the transitions till li with respect to
the specification of the program, i.e. (Ωin ∧ (

∧
p gp =⇒

¬Ωout)). Here,
∧
p gp corresponds to the path taken by the

test-case in terms of branch conditions. The above term can
be simplified as ((Ωin ∧ ¬

∧
gp) ∨ (Ωin ∧ ¬Ωout)). With

a disjunction in place, this requires two separate correctness
proofs (thus forcing the interpolants to capture enough infor-
mation to construct both the proofs):

1. Control-Flow Proof: Reasoning about why the current
trace is inconsistent with (Ωin ∧ ¬

∧
gp) essentially cap-

tures the control-flow of the buggy execution: why does

the program, when executed with the given input, produce
nothing but the correct execution path?

2. Data-Flow Proof: Reasoning about (input ∧ ¬output)
evokes a question about the flow of data: why did the
flow of the input values produce nothing but the desired
output?

As capturing the control-flow behavior and the data-flow
behavior well summarizes the behavior of a (sequential) pro-
gram, our proof, and hence, our interpolants capture enough
information about why the passing test actually passed!

Finally, forcing the concrete test input/output in B in
equation (1) allows our interpolants to be more general,
rather than specializing on the given input/output pair.

Our localization formula essentially attempts to prioritize
localizations such that the corrected execution of the buggy
program would obey most of the terms from the proof con-
straints. The intuition behind the same is as follows: if the
buggy execution does need to break some of the proof con-
straints, the respective tests may fail if the computation at
the given location is altered.

Note that if a proof constraint is broken, it does not imply
that the passing test would necessarily fail. It may happen
that a proof constraint is broken but the proof is intact due to
several reasons:

• The proof used was not the weakest proof: this is com-
mon as the interpolants produced by the solvers are not
the weakest possible interpolants. Consider the program
in Figure 7(a); the solver produces a stronger interpolant
(c = a + 100) instead a possibly weaker (c > a). Due
to that, the weaker fix will need to break the interpolant
to allow the required mutation; note that if the solver had
produced the weaker interpolant, the interpolant would
have still been satisfied by the mutation.
• The program path for the passing test now changes, but it

can successfully produce a proof along the new path. See
the program in Figure 7(b): the branch condition needs
to be changed to allow the passing test to take the else
part. This interpolant will have to be violated to allow for
the repair; however, the required mutation to correct the
program does not cause the existing passing test to fail.

Also, if a single proof constraint is violated, it does not
mean that the rest of the proof is rendered useless as the
new proof corresponding to the altered execution may differ
only slightly with the original proof. Moreover, attempting
to contain the damage to a proof allows for a more fine-
grained ranking of the bug locations and the locations caus-
ing minimal damage to proof is more likely to produce fewer
regression errors.

5. Synthesizing Repairs
In this section, we discuss how TINTIN operates in the au-
tomated repair mode. Our automated repair algorithm ranks

// Pass : (20, 119)

// Fail : (0, 199)

1 Input(a, b);

// Should be a + 200

2 c = a + 100;

// Obtained ITP :

c == a + 100

// A Weaker ITP : c > a

3

4

5 out = (c > b);

6

7 Assert(out == 1);

(a) Weakest interpolants

not computed

// Pass : (2, 4)

// Fail : (2, 3)

1 Input(a, b);

#

// Should be a < (b - 1)

2 if (a < b)
// Obtained ITP :

(a < b) => (branch = true)

#

3 c = 1;

4 else
5 c = 0;

6

7 Assert(c == desiredOutput)

(b) Path-changing repair

Figure 7: Reasons for proof breakage even in absence of regression

repairs that break a small number of proofs of the passing
tests higher. We transform a buggy program to enable re-
pairs by introducing “holes” in the program for each suspect
expression; we also add the computation constraint obtained
from the current expression (as soft constraints) to provide
higher ranking to repairs that are syntactically close to the
existing program. TINTIN targets a certain class of repairs
like off-by-one errors, incorrect relational operator etc. We
utilize a MAXSAT solver in an attempt to fill most of the
holes with the current expressions from the buggy program
while only breaking a small number of proofs for the passing
tests. Though TINTIN can produce multi-line repairs of mul-
tiple buggy expressions spanning over many source lines, we
begin our discussion to repairing a single expression.

5.1 Repair Grammar
TINTIN targets a set of well-directed repair actions. At
present, we include three classes of repairs:

• Off-by-One Repairs: this repair strategy targets each
constant c in the program in an attempt to synthesize a
repair by replacing c by c+ i, where i ∈ {−1, 0, 1};
• Incorrect Relational Operator: this repair strategy at-

tempts to replace relational operators to allow an alter-
nate operation from {≤,≥, <,>,=, 6=};
• Incorrect Logical Combinator: this repair strategy fo-

cuses on replacing “&&” operations by “||” and vice-
versa.

Use of such well-defined repair classes has been advo-
cated in [39]. Such strategies are useful as it is convenient
for the developer to easily understand the repair patch and so,
has been quite recent among popular repair tools (like [29]).

For each repair class, we introduce a repair grammar to
enable a possible repair. Figure 8 shows our repair grammar
for incorrect relational operator: the grammar is designed to
pick a relational operator based on the value of f.

repair(f, h) = f ∈ {f≤, f≥, f<, f>, f=, f 6=} ∧
(¬(f = f≤) ∨ (h = a ≤ b)) ∧ (¬(f = f≥) ∨ (h = a ≥ b)) ∧
(¬(f = f<) ∨ (h = a < b)) ∧ (¬(f = f>) ∨ (h = a > b)) ∧
(¬(f = f=) ∨ (h = (a == b))) ∧
(¬(f = f 6=) ∨ (h = (a 6= b)))

Figure 8: Repair Grammar for relational operators. Inputs a and b
are assumed to be available

5.2 Core Algorithm
To enable this repair, for every expression e that matches an
expression grammar, we replace e with a fresh variable he
in T F , allowing the expression e to take any possible value.
Hence, now this trace formula (T Fh) has “holes” (Equa-
tion (5)). We bind the holes to the repair grammar, constrain-
ing the values that the holes can accept to the ones allowed
by the repair grammar (Equation (6)). The variable λe acts
like a “switch” that disables the relaxation by forcing he to
necessarily be the original value of the expression in the cur-
rent (buggy) program; the choice variable fo corresponds to
the current expression in the program.

T Fh = ∀e T F [e→ he] (5)

ψf = T Fh ∧ Ωin ∧ Ωout∧∧
e

(repair(fe, he) ∧ ((fe = fo) ∨ ¬λe)) (6)

For each passing test, instead of using the complete trace
formula, we use an approximated constraint: we compute
interpolants Ipre and Ipost at the program points just before
and after the program points enclosing each of the suspicious
expressions. These interpolants effectively act as summaries
of the pre-condition and post-condition of their correctness
proofs: if these conditions hold for an altered expression, the
correctness proof would also survive (Equation (7)).

ψtp =((Ipre ∧ Ipost) ∨ ¬δt) ∧

Ωtin ∧
∧
p

gtp ∧
∧
e

repair(fe, he) (7)

Here
∧
gtp corresponds to the path taken by the passing

test defined by the values of the guards at different branch
locations.

The overall repair formula is constructed as a conjunction
of all the failing and passing tests as hard constraints, with
the “switch” variables as soft constraints.

ψ = ψf ∧
∧
t

ψtp︸ ︷︷ ︸
ζH

∧
∧
e

λe ∧
∧
t

δt︸ ︷︷ ︸
ζS

(8)

Algorithm 2 shows our overall algorithm: we generate the
interpolants (similar to section 4.5) in the procedure PROOF-
CONSTRAINTS() (lines 3-4). In contrast to section 4.5, given
the suspicious transition ρs, we now only compute the inter-
polants before and after the suspicious transition; for sim-
plicity, in this algorithm we assume that only a single suspi-
cious transition is provided; in case there are multiple sus-
picious transitions, we compute an (Ipre, Ipost) pair corre-
sponding to each suspicious transition. Then, we create the
extended constraint ψtp for passing test t using the “switch”
variable δt according to equation 7 (line 5); this term is used
to compute the repair formula (line 6) with the hard and soft
constraints as per Equation (8).

The main computation commences with performing the
partial MAXSAT query (line 13) that attempts to disable the
minimum number of the δt variables (for regression aware-
ness) and λe variable (for prioritizing small repairs) so as
to compute a ranking on repairs: small repair patches that
break only a few proofs (of the passing tests) are ranked
higher. The MAXSAT query returns the instances of δt and
λe variables that were relaxed in Bδ and Bλ respectively. To
enable the heuristic that the corrected program is syntacti-
cally “close” to the original (buggy) program, we invoke the
partial MAXSAT query with the λe variables as part of the
soft constraints (Equation (8)). This encourages the solver
to provide a solution that has the minimal changes over the
original program. We, then, disable this suggestion by mak-
ing the disjunction over the relaxed λe variables hard and
continue the process till no more repairs can be found.

Let us reiterate the role of the λe and δt variables: the
δt variables attempt to attain a repair that breaks the mini-
mum number of proofs from passing tests; the λe variables
attempt to construct the simplest repairs (change the mini-
mum number of expressions). Hence, our ranking function
is two dimensional unlike other tools [23, 36] that optimize
only on λe.

The inclusion of Ωtin in Equation 7 has an important con-
sequence. If a suggested repair does not violate any inter-
polants (Ipre ∧ Ipost), we are guaranteed regression free-
dom. This is because the inputs of the passing tests are used.
In localization however, the interpolants are assigned values
using the inputs of the failing test, and hence, the aforemen-
tioned guarantee is not provided.

5.3 Repair Validation
To ensure soundness, the suggested repair patches must be
verified against potential regression errors. We propose the
following software engineering methodology that a devel-
oper (say Alice) would use for verifying repairs:

1. TINTIN proposes a ranked list of suggested repairs,Ri;
2. Alice removes the first suggestionRi from the list; Alice

may outright reject the patch Ri on a (somewhat casual)
examination; in that case, she selects the next repair for
examination till she gets a plausible repairRk;

Algorithm 2 Repair Algorithm
1: procedure PROOFCONSTRAINTS(P, TSP)
2: forall t ∈ TSP

3: [

ρpre︷ ︸︸ ︷
(l0, ρ0, l1), ..,(ls, ρs, ls+1),

ρpost︷ ︸︸ ︷
.., (ln, ρn, ln+1)]← P(t)

4: [Itpre, Itpost]← INTERPOLANTS(ρtpre, ρ
t
post, P(t))

5: ψtp ← CONSTRUCTFORMULAPT(δt, Itpre, Itpost, P(t))
6: (ζH , ζS)← CONSTRUCTREPAIRMODEL(ψtp)
7: endfor
8: end procedure
9:

10: procedure MAIN(P, TSP , F)
11: (ζH , ζS)← PROOFCONSTRAINTS(P, TSp)
12: while TRUE do
13: (Bλ, Bδ)← PMAXSAT(ζH , ζS)
14: if B = ∅ then
15: exit
16: else
17: for all δt ∈ Bδ do
18: print ”Passing test t may have broken”
19: end for
20: for all λe ∈ Bλ do
21: repairRank ← score(Bλ, Bδ)
22: print ”[repairRank] Repair[s] is fix for expr e”
23: end for
24: b←

∨
{s | s ∈ Bλ}

25: ζH ← ζH ∪ b
26: ζS ← ζS \ b
27: end if
28: end while
29: end procedure

3. Alice runs all tests to check if Rk indeed causes regres-
sion;
• If it causes regression, she rejects Rk and repeats the

process with the next repair in the ranked listRk+1;
• It it does not cause any regression, she either accepts

the repair or unleashes a larger test-suite on the re-
paired program.

4. The process continues till either Alice is satisfied with a
repair, or the repair list exhausts. If Alice is not satisfied
with any of the suggested repairs, it implies that the repair
is beyond the current repair grammar of TINTIN . Alice
may consider re-executing TINTIN with a different repair
grammar.

6. Experiments
We start this section by describing our reimplementations of
two popular tools, BugAssist[23] for bug localization and
DirectFix[36] for repairs; then, we compare TINTIN against
these two tools.

Figure 9: Number of Clauses in localization in TCAS

6.1 Reimplementation of Existing Tools
6.1.1 BugAssist
BugAssist [23] is a popular BMC-based tool that employs
the hypothesis that the correct program usually differs from
a buggy program at a few lines in the source program. Given
a failing test, it gives a set of locations a high suspiciousness
score if changing a few lines in the source code can pass
the failing test. In its search for the smallest set of locations
that can fix an error, it employs a MAXSAT solver to get the
smallest set of locations whose constraints can be relaxed to
achieve satisfiability of the trace formula. However, the lo-
calizations produced by BugAssist are not regression aware
as it does not use information from any of the passing tests:
making changes to the given locations can break the passing
tests as their encoding of the localization formula does not
capture the behavior of these tests.

For localization, our reimplementation of BugAssist (we
refer to it as ReBugAssist) is almost identical to the original
paper. However, it is an implementation of their core algo-
rithm and lacks the side-tricks of using weighted MAXSAT
queries to extract small counterexamples. This keeps our
comparison with BugAssist fair lest we put BugAssist at a
disadvantage on the running time as the weighted MAXSAT
queries are more expensive. This does not otherwise affect
the quality of their results on the dimensions that we evalu-
ate. Our implementation looks similar to the original BugAs-
sist as we were able to closely reproduce their results in
terms of the number of candidate suggestions generated (see
Table 1 in [23]).

6.1.2 DirectFix
DirectFix [36] is another BMC-based tool that addresses this
problem by adding the trace formula corresponding to each
passing test in the test-suite in its repair formula so that the
suggested fixes cannot cause regression errors on the given
test-suite. Motivated by the hypothesis that a buggy expres-
sion would need a small syntactic alteration for a corrected
execution, DirectFix again employs a MAXSAT solver to
search for the smallest change in all the potentially buggy ex-

Table 4: Time taken (in seconds) by ReBugAssist (ReBug) and
TINTIN for localization in TCAS

V ReBug TINTIN V ReBug TINTIN V ReBug TINTIN

1 3.64 13.03 14 0.90 4.88 27 3.64 18.78
2 2.29 12.17 15 3.21 17.22 28 2.75 13.72
3 3.51 10.76 16 3.35 14.42 29 2.44 10.71
4 3.16 10.78 17 3.44 9.03 30 2.53 13.22
5 3.12 14.13 18 2.72 13.47 31 2.66 8.59
6 3.14 12.15 19 2.06 10.36 32 2.62 6.63
7 3.35 8.91 20 2.04 9.00 33 2.96 12.79
8 2.94 14.11 21 1.95 8.12 34 1.97 9.35
9 1.44 10.72 22 1.42 6.56 35 0.47 1.52
10 3.61 11.82 23 1.71 9.49 36 2.20 10.96
11 2.47 12.07 24 3.22 19.53 37 1.72 7.96
12 3.28 9.00 25 2.19 11.19 38 1.64 7.98
13 3.19 9.84 26 3.61 15.14 39 2.88 10.37

pressions (thereby combining localization and repair). How-
ever, the problem with DirectFix is its scalability: as it needs
to include a copy of the trace formulas of all the passing
tests, its repair formula is manyfold larger (proportional to
the number of tests in the test-suite) than that of BugAssist.
Moreover, as MAXSAT solving is expensive, the algorithm
is not practical unless limited to small sections of a program.
Further, DirectFix cannot be used in localization-mode: it
must necessarily perform localization and repair together;
hence, its debugging capabilities are restricted by its allow-
able set of mutations.

Our reimplementation of DirectFix (what we refer to as
ReDirectFix) does not use component-based synthesis to
synthesize the repair patch. Instead, we restrict our repair
grammar to three well-understood class of repairs (off-by-
one constants, incorrect relational operators and incorrect
logical combinators).

As we intended to evaluate the core algorithms, we do
not implement all the optimizations used in the tools (most
of these are hinted at but not detailed well in the respective
papers). It keeps our comparisons fair across the tools, and
otherwise should not affect the relative performance of the
tools.

6.2 Effectiveness of Our Algorithm
For showing the effectiveness of our algorithm, we run
TINTIN on 52 buggy versions from 12 programs from the
Siemens [15], SV-COMP [7] and Cascade [46] benchmark-
suites. We tested all the benchmarks on a Intel Core i7-4770
3.40 GHz processor along with 15.4 GB RAM. For the SV-
COMP benchmarks, we used an unroll factor of 6 for the
loops. We built TINTIN on top of the CBMC model checker
[12] to generate trace formulas from input programs. All
complexities of real-world code (procedures, pointers, ob-
jects, virtual calls) is modelled by CBMC while our tool
simply rides on the symbolic representations provided by
CBMC. For the interpolation procedures, we used the C/C++
API of MathSAT5 [11]. We used an off-the-shelf Max-SAT
solver MsUncore [31] for solving the pMax-SAT instances.

Our experiments attempt to answer the following research
questions:

RQ1. Does regression awareness improve the results for
bug localization?

RQ2. How much does regression awareness cost (in terms
of number of clauses and time) for bug localization?

RQ3. For program repairs, does using only regression
awareness instead of regression-freedom degrade the
results?

RQ4. How much scalability can be achieved with regres-
sion awareness (instead of regression freedom) for
program repairs?

6.3 Bug Localization
We performed detailed analysis of all the 39 versions for
the TCAS program from the Siemens suite to understand
the cost and improvement in the quality localization due to
regression awareness. The versions 33 and 38 have faults
(like incorrect array initializations) that we do not model
(BugAssist [23] also did not model these faults). As all
these versions could be repaired with change to a single
location (for a single failing test), we constrain our search
to changing only a single expression, both for ReBugAssist
and for TINTIN.

6.3.1 Comparisons with respect to the Ground-Truth
For producing the worst-case ranking for TINTIN, we used
the 1-3-3-4 scheme i.e. if there is a tie at the second position,
we put both the candidates at rank 3; this essentially captures
the number of locations that a developer would need to
examine in the worst case to reach the ground-truth. For the
average-case ranking for TINTIN, we used the 1-2.5-2.5-4
scheme i.e. if there is a tie at the second position, we put
both the candidates at rank 2.5; this essentially captures the
number of locations that a developer would need to examine
on an average to reach the ground-truth.

Figure 10 shows the improvement in the worst-case rank
of the ground truth of TINTIN with respect to ReBugAssist
for the TCAS program; the figure shows the average over
all failing tests. The height of the bars in the x-axis denotes
the number of suggestions that a developer would need to
examine before she discovers the ground truth repair for each
tool in the worst-case. For example, for v1, out of a total
of all possible suggestions of locations that can repair the
program, ReBugAssist (red bar) provides the ground truth
repair at rank 27 while TINTIN (green bar) ranks the ground
truth repair at rank 10. The total number of suggestions is
obtained by successive relaxations by the pMAXSAT solver.
Figure 11 shows the comparison for the average-case ranks.

Overall, to reach the ground-truth repair, TINTIN reduces
the developer effort — in terms of the number of locations
that a developer needs to examine to zero on the ground-truth
repair location — by an average (geometric mean) of 39% on

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

S
u

g
g

e
s
ti
o

n
s

TCAS Version

TINTIN
ReBugAssist

Figure 10: Number of Suggestions (Worst Case) in localization for TCAS from Siemens [15] benchmarks, requiring inspection to reach
ground-truth repair

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

S
u

g
g

e
s
ti
o

n
s

TCAS Version

TINTIN
ReBugAssist

Figure 11: Number of Suggestions (Average Case) in localization for TCAS from Siemens [15] benchmarks, requiring inspection to reach
ground-truth repair

these benchmark programs for the worst-case and by 15% in
the average case. This proves that regression awareness is
indeed a powerful asset for bug localization.

Figure 9 shows the cost of regression awareness in terms
of the increase in the size of the localization formula (due to
the interpolants): the number of clauses of our localization
formula increases by about 1.33× on an average. In terms of
time (Table 4), TINTIN is about 4.5× slower than ReBugAs-
sist on an average.

All approaches based on bounded model checking have
a limitation on their scalability. As suggested in other work
[23, 36], TINTIN also needs model reduction techniques like
concolic execution, abstract interpretation and delta debug-
ging to handle larger programs. Also, using statistical bug
localization approaches to identify buggy “regions” and re-
stricting the trace formula to such regions has also been
found effective. Table 5 shows the case when TINTIN is
employed for larger programs with model reduction tech-

niques: for these experiments, we restricted our model re-
duction techniques to employ concolic execution [17] and
program slicing [45]. Even on such underapproximated
models, TINTIN could consistently rank the ground truth
location as the topmost suggestion in contrast to ReBugAs-
sist that suggested two fixes of equal weights in each case.

We also studied the behaviour of TINTIN with automat-
ically generated tests when test-suites were not available.
Table 6 shows the performance of TINTIN on benchmarks
from the Cascade and SV-Comp suites. These programs also
form a different class of programs as these programs have
well-defined specifications (provided by assertions) on shal-
lower properties in contrast to the above programs which
were debugged with the exact input-output specifications.
We generate tests for these programs using the KLEE [9]
symbolic execution engine. On an average, TINTIN reduces
the size of the ground truth repair class by 65% as compared
to ReBugAssist in the worst-case and by 61% in the average

Table 5: This table shows the number of lines in code (L), the
time taken (in seconds) and the number of suggestions in average
case (SA) and worst case (SW) to reach the ground truth location
for each tool

Version L Redn ReBugAssist TINTIN
Time SW SA Time SW SA

totinfo(v3) 565 CS 0.2 2 1.5 0.3 1 1
totinfo(v14) 565 CS 0.2 2 1.5 0.3 1 1
totinfo(v21) 565 CS 0.2 2 1.5 0.3 1 1
schedule(v9) 564 CS 0.2 2 1.5 0.3 1 1

case. TINTIN performs exceptionally well in eurekaunsafe
and linearsearch where the developer effort is reduced by
86% and 80% respectively in the worst case, and by 77%
and 80% in the average case.

6.3.2 Comparisons with respect to All Repairable
Locations

The ground-truth repair is not the only possible way to fix a
program; however, the set of all potential repairs is difficult
to compute. Hence, we do a best-effort estimate by using the
SemFix[40] synthesizer module of the Angelix[37] tool to
approximate the set of all suggested repairs. We use Angelix
as it has a large repair grammar facilitated by component-
based synthesis. We feed each potential location suggested
by TINTIN/ReBugAssist to Angelix to check if a repair is
indeed possible at the given location. We synthesize the
repairs by taking a union of the repairs suggested by Angelix
in two following modes:

• Using the strongest possible mode (enable all repair
classes) with a timeout of 20 minutes;
• Using the default mode (only a few common repair

classes) with no timeout.

However, note that the set of repairs computed using the
above methodology is still approximate as a potential repair
may be missed because the repair is beyond the grammar of
Angelix or Angelix times out before reaching the repair; at
the same time, a reported repair may be faulty as it fails on
some test that is absent in the universal test-suite.

We restrict this experiment to only one failing test for
each version (we simply pick the first failing test); for the
passing tests, we use all the passing tests from the universal
test-suite for the respective version (about 1500 tests). We
use the passing tests from the universal test-suite to demon-
strate that the suggestions from TINTIN do generalize. Note
that TINTIN uses interpolants from a smaller test-suite of
representative tests and it is not exposed to the full universal
test-suite.

Figure 12 shows a plot of our findings: the height of the
green bar shows the number of suggestions from ReBugAs-
sist in its topmost class; we mark the regression-free re-
pairs by a × mark. We compute the average case via the
1-2.5-2.5-4 scheme, i.e. on a tie, we assign the same average

rank to each of them assuming the set of all regression-free
suggestions are distributed uniformly in the class. The blue
dotted lines show the rank 60% mark for the number of sug-
gestions for ReBugAssist. The experiment allows us to make
the following observations:

• TINTIN ranks most of the regression-free suggestions at
the higher ranks. For example, in version 1, eight of the
nine regression-free suggestions appear at an average-
case rank of 8.5 (the cluster of × show the number
of regression-free suggestions at the specified average
rank). Overall, one can see that most of the regression-
free suggestions (about 75%) lie below the blue line.
• TINTIN ranks most of the regression causing suggestions

low. This can be shown by showing the decreasing den-
sity of the regression-free suggestions as we move from
the high to the lower ranks.
• TINTIN is able to generalize well from a small represen-

tative set of tests: though TINTIN is only exposed to a
small subset of the universal set of tests, it generalizes
well on the much bigger test-suite.

6.4 Repair Synthesis
For automated repairs, we compare our tool to ReDirectFix.
We use about fifty passing tests in each case (similar to
experiments described in [36]) that were selected to provide
good code coverage, to serve as the representative tests. Our
passing tests were sufficient to allow ReDirectFix to produce
only one repair patch in each case. For producing the ranking
for TINTIN, we used the 1-3-3-4 scheme i.e. if there is a tie
at the second position, we put both the candidates at rank 3;
this essentially captures the number of repair patches that
a developer would need to examine in the worst case to
reach the ground-truth (or semantically equivalent) repair. To
enable a better interpretation of results in terms of the effect
of regression awareness, we limit the number of statements
that can be relaxed by the MAXSAT query to one. Hence,
all the repairs suggested by ReDirectFix belong to the same
suspicious class. However, the repairs suggested by TINTIN
are ranked by the number of proof terms that break.

Table 7 shows the results of our experiments: we show
only the versions of TCAS that could be repaired by one of
our repair grammars consisting of off-by-one errors (OBO),
incorrect relational operator (IRO) and incorrect logical
combinator (IRC). The ranking of repairs by TINTIN is high:
in 8 out of 11 cases, TINTIN ranks the ground truth repair
as the first suggestion by the 1-3-3-4 ranking scheme. The
version v16 produces two repairs at the topmost rank that
includes the ground-truth repair.

In terms of the number of clauses, TINTIN constructs a
repair formula which is about 43% smaller in size (on an
average) of that of ReDirectFix. On time, TINTIN is 2.3×
faster than ReDirectFix on an average. As a developer would
examine each repair one-by-one till she gets a repair with

Table 6: This table shows the number of line in code (L), the number of clauses(#C), the time taken (in seconds) and the number of
suggestions in average case (SA) and worst case (SW) to reach the ground truth location for each tool

Version L ReBugAssist TINTIN
#C Time SW SA #C Time SW SA

inf1 33 6208 0.18s 13 7 13144 2.9s 6 3.5
inf4 59 9293 0.2s 13 7 22694 3.5s 7 4
inf5 60 6584 0.28s 14 7.5 14044 3.7s 4 2.5

sum1unsafe 15 8414 0.16s 7 4 12597 0.3s 3 2
sum2unsafe 15 17209 0.5s 10 5.5 26143 2s 5 3

sum01unsafe 15 13961 0.27s 9 5 20951 1.3s 2 1.5
nec20unsafe 26 6959 0.14s 7 4 8418 0.23s 3 2
eurekaunsafe 57 82371 17s 29 15 182371 117s 4 3.5
linearsearch 25 4.3m 198s 15 8 4.3m 220s 3 2

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

R
a

n
k

Version

ReBugAssist’s 1st Suggestion Class
Successful Repairs with Tintin’s Ranking

60% mark

Figure 12: Performance of TINTIN on the set of all repairable locations (average case)

which she is satisfied (that we take as the ground truth
repair), we show the time till we hit the ground truth repair
(or a semantically equivalent patch). The time includes the
time to enumerate all repairs of the same suspicious class
that includes the ground-truth repair, including the time the
solver declares that it is unable to generate any further such
a suggestion.

To summarize, our experiments demonstrate that TINTIN
can significantly scale bounded model checking based re-
pair to larger programs and larger (representative) regression
test-suites without much degradation of the ranking of the
repair patches.

We close our discussion with a brief description of v3
and v12. These programs have a problem with incorrect log-
ical combinator. The MaxSAT queries for TINTIN is much

quicker, but it loses time in suggesting the more number of
repairs at a higher rank.

7. Related Work
Symbolic methods [10, 23, 36, 40] of fault localization es-
sentially search angelic values for expressions that can cor-
rect the faulty execution. Earlier tools [6, 18] attempted to
flag an expression/statement buggy with respect to its “dis-
tance” from a correct execution. Ball et al. [6] explores the
state-space of the program via a the SLAM model checker
[5]. For a faulty execution, the cause of failure is identified
as the transitions in the faulty trace that do not intersect with
any transition on the correct traces. The approach had mul-
tiple shortcomings, as it needed the entire state-space of the
program to be executed, and it necessarily needed to oper-
ate on an abstract model of the program; such overapproxi-

Table 7: In this table, #C is the number of clauses, T is the time
(in seconds) required to reach the ground truth repair and #S is the
number of repairs suggested by ReDirectFix and TINTIN till the
ground truth repair is reached (in TCAS). RC is type of error in the
respective version. In version v16, the ground-truth repair is tied
at the top position with another repair; so its rank as per 1-3-3-4
scheme is 2, but as per 1-2-2-4 scheme is 1 (as shown in brackets).

Ver. ReDirectFix TINTIN RC# C T # S # C T # S
v1 4.73m 50.78 1 3.08m 22.70 1 IRO
v3 2.18m 14.18 1 0.87m 19.15 3 ILC
v4 2.18m 16.13 1 0.87m 12.62 1 ILC
v6 4.75m 43.08 1 3.1m 31.30 1 IRO
v9 4.72m 159.24 1 3.11m 31.62 1 IRO
v10 4.75m 43.00 1 3.1m 30.91 1 IRO
v12 2.19m 15.48 1 0.88m 27.68 4 ILC
v16 2.85m 32.00 1 1.47m 23.40 2 (1) OBO
v17 2.85m 28.31 1 1.48m 15.00 1 OBO
v20 4.72m 138.12 1 3.1m 52.57 1 IRO
v39 4.73m 129.46 1 3.1m 19.75 1 IRO

mations lead to incompleteness (i.e. an “angelic” transition
exists in the concrete model but not in the abstract model).
Secondly, this scheme fails to work if the program is pro-
vided an incomplete specification in terms of a test-suite.
Groce et al. [18] used the CBMC model-checker to search
for a successful execution that is closest to the given fail-
ing execution. The closeness metric is defined in terms of
the values of the program-variables at each program point.
The program variables whose values differ are marked as
potentially faulty. Unlike the previous approach, this does
not need the full-state space exploration of the program and
thus, does not necessitate abstraction. Instead, CBMC con-
structs a compact trace formula for the program (without ab-
straction), and hence, assures completeness. Liu et al. [28]
used CBMC to relax the set of branch predicates in the pro-
gram in a search for a path that could pass a failing test.
The path that deviates the faulty path the least for a cor-
rected execution is more likely to be the culprit. BugAssist is
a more recent approach to fault localization that again uses
the CBMC model-checker to find the minimum number of
program statements that would need to change to repair the
faulty program. The BugAssist tool used a partial MAXSAT
solver to search for such “suspicious” program statements.
The authors demonstrate that their technique is effective.

However, the primary problem with all the above tools
is that they are not “regression-aware”: they do not attempt
to use the potential “harm” that changing a given statement
can have on the passing executions. In fact, none of the
algorithms above take a set of passing tests for input. TINTIN
embeds regression awareness for localization by prioritizing
suspicious location on the amount of damage they can cause
to a set of passing tests. On the other hand, DirectFix [36]
solves this problem by fusing the localization and repair
steps, thereby synthesizing a repair that can provably not

cause regression errors on the test-suite. DirectFix does so by
including the trace formula of all the passing tests such that
any repair that fails on any of the tests renders the formula
unsatisfiable. The problem with DirectFix is its scalability
and inability to run in a localization-only mode. We provide
a detailed analysis of TINTIN with DirectFix. Samimi et
al. [43] propose an algorithm to repair a class of failures
involving constant prints in PHP programs; they encode
their problem as string constraints to synthesize repairs that
make all tests pass.

The second category of symbolic techniques use a sym-
bolic execution engine instead of a model-checker. Angelic
Debugging [10] first uses statistical techniques to identify
suspicious location and sets it output value to a fresh sym-
bolic variable (thereby allowing it to latch on to a symbolic
value). It, then, employs a symbolic execution engine to ex-
plore the symbolic execution tree of the given expression
in search of a passing execution. SemFix [40] extends this
idea by also synthesizing a repair automatically by using
component-based synthesis [22] for the angelic values dis-
covered. However, both the above tools could localize/repair
only 1-fixable program, i.e. if the program can be repaired
using only a single change. Moreover, a bigger problem is
that symbolic execution techniques are highly dependent on
the performance of statistical techniques to suggest good
“suspicious” locations as each execution of the above tool
targets a single location. Angelix [37] combines the ideas of
SemFix and DirectFix by using DirectFix-style repairs on
angelic values as was done for SemFix, thus allowing multi-
line fixes.

Most of the statistical fault localization techniques [26,
27, 38] are based on indicators that provide a location that
is “close” to the actual error site, often measured by the
number of trips on the program dependence graph to reach
the actual fault site [42]. Moreover, though the techniques
are more scalable, the quality of repairs is much inferior to
BMC based techniques.

There have been multiple other proposals for fault local-
ization and repair: Delta Debugging [49] is a dynamic anal-
ysis technique that tracks the concrete program states in an
attempt to simplify failing test cases to a minimal test case
that still reproduces the problem. Genprog [24, 41, 47, 48]
attempt to synthesize a repair by generating mutations of the
program and use genetic programming to evolve the muta-
tions that are likely bug patches. Though GenProg is highly
scalable, the quality of the repair is low [36].

Interpolants have been used in many applications for
model-checking. McMillan [32] proposed the idea of inter-
polation for bounded-model checking by using interpolants
to overapproximate reachability in k-steps, and iteratively
increasing k while searching for inductive invariants. The
Impact algorithm [33] used interpolants to overapproximate
the reachable states of program locations derived from in-
feasible paths that the model-checker encountered while

traversing the program. These interpolants are iteratively
weakened by successive traversals till a proof of correctness
for the program is obtained. Interpolants have also found
their use in summarizing functions [44] and Horn clause
solvers [33] which have found applications in faster model
checkers [8]. UFO [2, 3] uses a powerful combination of ab-
straction and interpolation for program verification: it starts
off with with abstract interpretation [13] to prove the pro-
gram, but uses interpolants to refine from counterexamples.
Albarghouthi et al. [4] provide a compositional approach
to interpolation that is capable of providing simpler inter-
polants than traditional SMT as a decision procedure. Both
the above techniques can potentially improve our algorithm
as they often produce simpler and weaker interpolants. Such
weaker interpolants can help our cause by requiring TINTIN
to break fewer proof terms for the correct repairs (see sec-
tion 4.6).

Interpolation has also been used for symbolic execution
for pruning paths [20, 21] by using interpolants to succinctly
capture why the executions through a given program point
cannot reach the error location. Jaffar et al. [19] extend the
technique to applying interpolation for concolic execution
that supports any given search strategy. So far, use of in-
terpolants have primarily been restricted to using them to
summarize the proof of unreachability to the error location,
thereby gaining execution time by pruning the state-space
exploration, both in model checking [34, 35] and in sym-
bolic/concolic execution [19–21]. We believe that our use
of interpolants in summarizing the proof of correctness of
the passing tests to use them as soft “guards” for regression
awareness is novel.

8. Discussion
We propose regression awareness as a solution to the pain
points of two common debugging activities — bug localiza-
tion and automated repair.

For bug localization, though tools like BugAssist [23] sig-
nificantly reduce the number of program lines that need to
be inspected (BugAssist reports about 8% reduction on the
TCAS suite), which, however, in terms of the the total num-
ber of suspicious locations that a developer would have to
examine, is still large. This calls for a good ranking scheme.
We found that adding regression awareness by incorporating
proofs (from the passing tests) in the localization formula)
significantly improves the ranking for the ground truth re-
pair; our implementation reduces developer effort by 45%
in the worst-case and by 27% on average, i.e. the developer
will need to examine fewer locations to reach the ground
truth repair.

For automated repair, the primary pain point is in terms
of its scalability: the symbolic encoding of the grammar of
allowable mutations (repair grammar) significantly blows up
the repair formula; hence, the size of the repair formula is
significantly larger than the corresponding localization for-
mula. We propose that if we can identify a small set of poten-

tial repairs quickly (using regression-awareness instead of
regression-freedom), they can be validated easily by simply
executing them on the test-suite without requiring any addi-
tional developer time over DirectFix. Also note that though
DirectFix guarantees regression-freedom over the selected
tests, it provides no guarantees over the universal test-suite,
and hence, even the DirectFix repairs have to be validated on
the universal test-suite.

For example for the version v20 of the TCAS program,
the number of clauses for the repair formula for ReDirectFix
is 4.72 million and it takes 138s for the repair activity; in
contrast to that, ReBugAssist constructs a localization func-
tion with only about 0.027 million clauses for the complete
program and reaches the ground truth repair in 2.27s. So,
for the repair solution, we are able to achieve smaller repair
formula and faster solving times with regression awareness
(replacing regression freedom). We attain a speedup between
1.27× to 6.53× over most of our benchmark programs, with
the ground-truth repair patch still appearing as the first sug-
gestion in over 70% of our benchmarks.

References
[1] Software-artifact infrastructure repository (SIR).
http://sir.unl.edu/portal/index.php.

[2] Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and
Marsha Chechik. UFO: Verification with Interpolants and Ab-
stract Interpretation. In Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’13, pages 637–640, Berlin, Hei-
delberg, 2013. Springer-Verlag.

[3] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Mar-
sha Chechik. UFO: A Framework for Abstractionand
Interpolation-based Software Verification. In Proceedings of
the 24th International Conference on Computer Aided Veri-
fication, CAV’12, pages 672–678, Berlin, Heidelberg, 2012.
Springer-Verlag.

[4] Aws Albarghouthi and Kenneth L. McMillan. Beautiful In-
terpolants. In Proceedings of the 25th International Confer-
ence on Computer Aided Verification, CAV’13, pages 313–
329, Berlin, Heidelberg, 2013. Springer-Verlag.

[5] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sri-
ram K. Rajamani. Automatic Predicate Abstraction of C Pro-
grams. In Proceedings of the ACM SIGPLAN 2001 Confer-
ence on Programming Language Design and Implementation,
PLDI ’01, pages 203–213, New York, NY, USA, 2001. ACM.

[6] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From
Symptom to Cause: Localizing Errors in Counterexample
Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
’03, pages 97–105, New York, NY, USA, 2003. ACM.

[7] Dirk Beyer. Software Verification and Verifiable Witnesses -
(Report on SV-COMP 2016), 2016. (accessed in Jan 2016)
https://github.com/sosy-lab/sv-benchmarks.

[8] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey
Rybalchenko. Horn clause solvers for program verification.

In Fields of Logic and Computation II, pages 24–51. Springer,
2015.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE:
Unassisted and Automatic Generation of High-coverage Tests
for Complex Systems Programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’08, pages 209–224, Berkeley, CA, USA,
2008. USENIX Association.

[10] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav
Bodik. Angelic Debugging. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11,
pages 121–130, New York, NY, USA, 2011. ACM.

[11] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaaf-
sma, and Roberto Sebastiani. The MathSAT5 SMT Solver.
In Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’13, pages 93–107, Berlin, Heidelberg, 2013.
Springer-Verlag.

[12] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool
for checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 168–176.
Springer, 2004.

[13] Patrick Cousot and Radhia Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’77, pages 238–252, New
York, NY, USA, 1977. ACM.

[14] William Craig. Three uses of the Herbrand-Gentzen theorem
in relating model theory and proof theory. The Journal of
Symbolic Logic, 22(03):269–285, 1957.

[15] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Sup-
porting controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical Softw.
Engg., 10(4):405–435, October 2005.

[16] Zhaohui Fu and Sharad Malik. On Solving the Partial MAX-
SAT Problem. In Proceedings of the 9th International Con-
ference on Theory and Applications of Satisfiability Testing,
SAT’06, pages 252–265, Berlin, Heidelberg, 2006. Springer-
Verlag.

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART:
Directed Automated Random Testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 213–223, New
York, NY, USA, 2005. ACM.

[18] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strich-
man. Error Explanation with Distance Metrics. Int. J. Softw.
Tools Technol. Transf., 8(3):229–247, June 2006.

[19] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A. Navas.
Boosting Concolic Testing via Interpolation. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 48–58, New York, NY,
USA, 2013. ACM.

[20] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and
Andrew E. Santosa. TRACER: A Symbolic Execution Tool
for Verification. In Proceedings of the 24th International

Conference on Computer Aided Verification, CAV’12, pages
758–766, Berlin, Heidelberg, 2012. Springer-Verlag.

[21] Joxan Jaffar, Jorge A. Navas, and Andrew E. Santosa. Un-
bounded Symbolic Execution for Program Verification. In
Proceedings of the Second International Conference on Run-
time Verification, RV’11, pages 396–411, Berlin, Heidelberg,
2012. Springer-Verlag.

[22] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Ti-
wari. Oracle-guided Component-based Program Synthesis.
In Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ICSE ’10, pages
215–224, New York, NY, USA, 2010. ACM.

[23] Manu Jose and Rupak Majumdar. Cause Clue Clauses: Error
Localization Using Maximum Satisfiability. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 437–
446, New York, NY, USA, 2011. ACM.

[24] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and
Westley Weimer. GenProg: A Generic Method for Automatic
Software Repair. IEEE Trans. Softw. Eng., 38(1):54–72, Jan-
uary 2012.

[25] Chu Min Li and Felip Manya. MaxSAT, Hard and Soft
Constraints. Handbook of satisfiability, 185:613–631, 2009.

[26] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and
Michael I. Jordan. Scalable Statistical Bug Isolation. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages
15–26, New York, NY, USA, 2005. ACM.

[27] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P.
Midkiff. SOBER: Statistical Model-based Bug Localization.
In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 286–295, New York, NY, USA, 2005.
ACM.

[28] Yongmei Liu and Bing Li. Automated Program Debug-
ging via Multiple Predicate Switching. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI’10, pages 327–332. AAAI Press, 2010.

[29] Fan Long and Martin Rinard. Staged Program Repair with
Condition Synthesis. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 166–178, New York, NY, USA, 2015. ACM.

[30] Joao Marques-Silva. Minimal Unsatisfiability: Models, Algo-
rithms and Applications (Invited Paper). In Proceedings of the
2010 40th IEEE International Symposium on Multiple-Valued
Logic, ISMVL ’10, pages 9–14, Washington, DC, USA, 2010.
IEEE Computer Society.

[31] Joao Marques-Silva and Jordi Planes. Algorithms for Maxi-
mum Satisfiability Using Unsatisfiable Cores. In Proceedings
of the Conference on Design, Automation and Test in Europe,
DATE ’08, pages 408–413, New York, NY, USA, 2008. ACM.

[32] K. L. McMillan. Applications of Craig Interpolants in Model
Checking. In Proceedings of the 11th International Confer-
ence on Tools and Algorithms for the Construction and Anal-

ysis of Systems, TACAS’05, pages 1–12, Berlin, Heidelberg,
2005. Springer-Verlag.

[33] Kenneth L. McMillan. Lazy Abstraction with Interpolants.
In Proceedings of the 18th International Conference on Com-
puter Aided Verification, CAV’06, pages 123–136, Berlin,
Heidelberg, 2006. Springer-Verlag.

[34] Kenneth L. McMillan. Lazy Annotation for Program Testing
and Verification. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’10, pages
104–118, Berlin, Heidelberg, 2010. Springer-Verlag.

[35] Kenneth L. Mcmillan. Lazy Annotation Revisited. In Pro-
ceedings of the 16th International Conference on Computer
Aided Verification - Volume 8559, pages 243–259, New York,
NY, USA, 2014. Springer-Verlag New York, Inc.

[36] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Di-
rectFix: Looking for Simple Program Repairs. In Proceedings
of the 37th International Conference on Software Engineering
- Volume 1, ICSE ’15, pages 448–458, Piscataway, NJ, USA,
2015.

[37] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. An-
gelix: Scalable multiline program patch synthesis via sym-
bolic analysis. In Proceedings of the 38th International Con-
ference on Software Engineering, ICSE ’16, pages 691–701,
New York, NY, USA, 2016. ACM.

[38] Varun Modi, Subhajit Roy, and Sanjeev K. Aggarwal. Ex-
ploring Program Phases for Statistical Bug Localization. In
Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,
PASTE ’13, pages 33–40, New York, NY, USA, 2013. ACM.

[39] Martin Monperrus. A Critical Review of ”Automatic Patch
Generation Learned from Human-written Patches”: Essay on
the Problem Statement and the Evaluation of Automatic Soft-
ware Repair. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, pages 234–242,
New York, NY, USA, 2014. ACM.

[40] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoud-
hury, and Satish Chandra. SemFix: Program Repair via Se-
mantic Analysis. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 772–

781, Piscataway, NJ, USA, 2013. IEEE Press.

[41] ThanhVu Nguyen, Westley Weimer, Claire Le Goues, and
Stephanie Forrest. Using execution paths to evolve soft-
ware patches. In Software Testing, Verification and Valida-
tion Workshops, 2009. ICSTW’09. International Conference
on, pages 152–153. IEEE, 2009.

[42] Manos Renieres and Steven P Reiss. Fault localization with
nearest neighbor queries. In Automated Software Engineering,
2003. Proceedings. 18th IEEE International Conference on,
pages 30–39. IEEE, 2003.

[43] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein,
Frank Tip, and Laurie J. Hendren. Automated repair of HTML
generation errors in PHP applications using string constraint
solving. In 34th International Conference on Software En-
gineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
pages 277–287, 2012.

[44] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina.
FunFrog: Bounded Model Checking with Interpolation-Based
Function Summarization, pages 203–207. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[45] Frank Tip. A survey of program slicing techniques. J. Prog.
Lang., 3(3), 1995.

[46] Wei Wang and Clark Barrett. Cascade 2016 - (Com-
petition Contribution), 2016. (accessed in Feb 2016)
http://cascade.cims.nyu.edu/vmcai.html.

[47] Westley Weimer. Patches As Better Bug Reports. In Pro-
ceedings of the 5th International Conference on Generative
Programming and Component Engineering, GPCE ’06, pages
181–190, New York, NY, USA, 2006. ACM.

[48] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically Finding Patches Using Ge-
netic Programming. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages 364–
374, Washington, DC, USA, 2009. IEEE Computer Society.

[49] Andreas Zeller and Ralf Hildebrandt. Simplifying and Iso-
lating Failure-Inducing Input. IEEE Trans. Softw. Eng.,
28(2):183–200, February 2002.

